πDMD Simulation as a Strategy for Refinement of AlphaFold2 Modeled Fuzzy Protein Complexes Structures

被引:0
|
作者
Muradyan, N. G. [1 ]
Sargsyan, A. A. [1 ,2 ]
Arakelov, V. G. [1 ]
Paronyan, A. K. [1 ,2 ]
Arakelov, G. G. [1 ,2 ]
Nazaryan, K. B. [1 ,2 ]
机构
[1] Natl Acad Sci Republ Armenia NAS RA, Lab Computat Modeling Biol Proc, Inst Mol Biol, Yerevan 0014, Armenia
[2] Russian Armenian Univ, Yerevan 0051, Armenia
关键词
AlphaFold2; pi DMD; intrinsically disorder regions; nucleocapsid protein; p53; 14-3-3; gamma; DISCRETE MOLECULAR-DYNAMICS; BIOLOGY;
D O I
10.1134/S0026893324700870
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Disordered proteins are of great interest due to their structural features, as they do not have well-defined three-dimensional structures. These proteins, often called intrinsically disordered proteins or regions, play critical roles in various cellular processes and are associated with the development of a number of diseases. Our in silico research focused on the investigation of protein complexes that include both ordered proteins, such as 14-3-3 gamma, and proteins containing intrinsically disordered regions, such as nucleocapsid (N) of SARS-CoV-2 and p53. Our findings demonstrate, that complexes modeled by AlphaFold2 and refined using discrete molecular dynamics simulations acquire assembled structures in disordered regions. After refinement, the modeled complexes exhibit a degree of structural assembly that addresses a key challenge in studying disordered proteins-their propensity to evade stable conformations.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Evaluation of Myocilin Variant Protein Structures Modeled by AlphaFold2
    Ng, Tsz Kin
    Ji, Jie
    Liu, Qingping
    Yao, Yao
    Wang, Wen-Ying
    Cao, Yingjie
    Chen, Chong-Bo
    Lin, Jian-Wei
    Dong, Geng
    Cen, Ling-Ping
    Huang, Chukai
    Zhang, Mingzhi
    BIOMOLECULES, 2024, 14 (01)
  • [2] AlphaFold2 Model Refinement Using Structure Decoys
    Alshammari, Maytha
    He, Jing
    Wriggers, Willy
    14TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, BCB 2023, 2023,
  • [3] Evaluation of AlphaFold2 structures as docking targets
    Holcomb, Matthew
    Chang, Ya-Ting
    Goodsell, David S.
    Forli, Stefano
    PROTEIN SCIENCE, 2023, 32 (01)
  • [4] Protein Loop Modeling Using AlphaFold2
    Wang, Junlin
    Wang, Wenbo
    Shang, Yi
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2023, 20 (05) : 3306 - 3313
  • [5] Protein model refinement for cryo-EM maps using AlphaFold2 and the DAQ score
    Terashi, Genki
    Wang, Xiao
    Kihara, Daisuke
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2023, 79 : 10 - 21
  • [6] Assessing Fairness of AlphaFold2 Prediction of Protein 3D Structures
    Abbas, Usman
    Chen, Jin
    Shao, Qing
    14TH ACM CONFERENCE ON BIOINFORMATICS, COMPUTATIONAL BIOLOGY, AND HEALTH INFORMATICS, BCB 2023, 2023,
  • [8] AlphaFold2 structures guide prospective ligand discovery
    Lyu, Jiankun
    Kapolka, Nicholas
    Gumpper, Ryan
    Alon, Assaf
    Wang, Liang
    Jain, Manish K.
    Barros-Alvarez, Ximena
    Sakamoto, Kensuke
    Kim, Yoojoong
    DiBerto, Jeffrey
    Kim, Kuglae
    Glenn, Isabella S.
    Tummino, Tia A.
    Huang, Sijie
    Irwin, John J.
    Tarkhanova, Olga O.
    Moroz, Yurii
    Skiniotis, Georgios
    Kruse, Andrew C.
    Shoichet, Brian K.
    Roth, Bryan L.
    SCIENCE, 2024, 384 (6702) : 1316 - +
  • [9] AlphaFold2 fails to predict protein fold switching
    Chakravarty, Devlina
    Porter, Lauren L.
    PROTEIN SCIENCE, 2022, 31 (06)
  • [10] AlphaFold2 versus experimental structures: evaluation on G protein-coupled receptors
    Xin-heng He
    Chong-zhao You
    Hua-liang Jiang
    Yi Jiang
    H. Eric Xu
    Xi Cheng
    Acta Pharmacologica Sinica, 2023, 44 : 1 - 7