Guiding Competitive Binding Assays Using Protein-Protein Interaction Prediction: The HER2-Affitin Use Case

被引:0
|
作者
Ranaudo, Anna [1 ]
Cosentino, Ugo [1 ]
Greco, Claudio [1 ]
Moro, Giorgio [2 ]
Maiocchi, Alessandro [3 ]
Moroni, Elisabetta [4 ]
机构
[1] Univ Milano Bicocca, Dept Earth & Environm Sci, I-20126 Milan, Italy
[2] Univ Milano Bicocca, Dept Biotechnol & Biosci, I-20126 Milan, Italy
[3] Bracco SpA, I-20134 Milan, Italy
[4] Natl Res Council Italy, Inst Chem Sci & Technol G Natta, I-20131 Milan, Italy
来源
ACS OMEGA | 2024年 / 9卷 / 50期
关键词
STRUCTURAL BASIS; HER2; STABILITY; INSIGHTS; ANTIBODY; CANCER; SERVER;
D O I
10.1021/acsomega.4c07317
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Affitins are a class of small artificial proteins, designed as alternatives to antibodies for therapeutic, diagnostic, and biotechnological applications. Recent patents by Bracco Imaging S.p.A have demonstrated the potential of two engineered affitins for designing imaging probes to detect and monitor human epidermal growth-factor receptor 2 (HER2) levels in vivo. Targeting HER2 is critical, as its overexpression is linked to poor prognosis of several cancer diseases, making it a key marker for treatment strategies and diagnostic tools. Interestingly, these affitins do not compete with the commonly used monoclonal antibodies trastuzumab and pertuzumab for HER2 binding sites, allowing their concurrent use in vivo and making them suitable for imaging or diagnostic purposes. Since these two affitins compete for the same yet unidentified binding site on HER2, structural insights into these interactions are essential for facilitating the design and development of more effective diagnostic tools and treatments. In this study, we used protein-protein docking and molecular dynamics simulations to model the binding of these affitins to HER2. The stability of the predicted complexes was quantified by using the DockQ parameter, a widely used metric for evaluating protein-protein docking predictions. The docking poses were then compared with HER2 sites likely to interact with a protein partner, as predicted by the matrix of local coupling energies method. The combination of these two computational methods allowed for the identification of the most likely docking poses. Comparative analysis with HER2-protein complexes from the Protein Data Bank suggests that both affitins may bind HER2 at the same epitopes as an antibody fragment and an affibody. These findings indicate that targeted competitive binding assays could efficiently reduce the experimental efforts to map the HER2-affitin interactions. The computational approach proposed in this study not only provides insights into this specific case but also establishes a robust framework applicable for facilitating the structural modeling and interaction prediction of other affitin-protein systems.
引用
收藏
页码:49522 / 49529
页数:8
相关论文
共 50 条
  • [1] Information of binding sites improves prediction of protein-protein interaction
    Patel, Tapan
    Pillay, Manoj
    Jawa, Rahul
    Liao, Li
    ICMLA 2006: 5TH INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND APPLICATIONS, PROCEEDINGS, 2006, : 205 - +
  • [2] Prediction of protein-protein binding affinity using diverse protein-protein interface features
    Ma, Duo
    Guo, Yanzhi
    Luo, Jiesi
    Pu, Xuemei
    Li, Menglong
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2014, 138 : 7 - 13
  • [4] Prediction of protein-protein binding affinity using diverse protein-protein interface features
    Ma, Duo
    Guo, Yanzhi
    Luo, Jiesi
    Pu, Xuemei
    Li, Menglong
    Chemometrics and Intelligent Laboratory Systems, 2014, 138 : 7 - 13
  • [5] Prediction of protein function using protein-protein interaction data
    Deng, MH
    Zhang, K
    Mehta, S
    Chen, T
    Sun, FZ
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2003, 10 (06) : 947 - 960
  • [6] Prediction of protein function using protein-protein interaction data
    Deng, MH
    Zhang, K
    Mehta, S
    Chen, T
    Sun, FZ
    CSB2002: IEEE COMPUTER SOCIETY BIOINFORMATICS CONFERENCE, 2002, : 197 - 206
  • [7] Using Topology Information for Protein-Protein Interaction Prediction
    Birlutiu, Adriana
    Heskes, Tom
    PATTERN RECOGNITION IN BIOINFORMATICS, PRIB 2014, 2014, 8626 : 10 - 22
  • [8] Biological Protein-Protein Interaction Prediction Using Binding Free Energies and Linear Dimensionality Reduction
    Rueda, L.
    Garate, Carolina
    Banerjee, Sridip
    Aziz, Md. Mominul
    PATTERN RECOGNITION IN BIOINFORMATICS, 2010, 6282 : 383 - +
  • [9] Protein-protein interaction and site prediction using transfer learning
    Liu, Tuoyu
    Gao, Han
    Ren, Xiaopu
    Xu, Guoshun
    Liu, Bo
    Wu, Ningfeng
    Luo, Huiying
    Wang, Yuan
    Tu, Tao
    Yao, Bin
    Guan, Feifei
    Teng, Yue
    Huang, Huoqing
    Tian, Jian
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (06)
  • [10] Prediction of protein-protein interaction using graph neural networks
    Jha, Kanchan
    Saha, Sriparna
    Singh, Hiteshi
    SCIENTIFIC REPORTS, 2022, 12 (01)