A Novel Completion Method for Sparse Traffic Data Imputation

被引:0
|
作者
Ouyang, Renqiu [1 ]
Hu, Yikun [1 ]
Wang, Haotian [1 ]
Hu, Rong [1 ]
Yang, Wangdong [2 ]
Li, Kenli [2 ]
机构
[1] Hunan Univ, Changsha 410082, Peoples R China
[2] Hunan Univ, Comp Sci & Technol, Changsha 410082, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Tensors; Roads; Laplace equations; Imputation; Trajectory; Data models; Sparse matrices; Parallel algorithms; Linear programming; Internet of Things; TENSOR COMPLETION;
D O I
10.1109/MITS.2024.3523353
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Traffic data imputation is essential in smart cities and the Internet of Things (IoT). Tensor completion is an efficient method for traffic data imputation. However, these methods overlook the integration of contextual and spatial information, which are important for traffic data imputation. Hence, this study proposes a novel tensor completion method leveraging contextual and spatial information for sparse traffic data imputation (STDI). Initially, we develop a model for STDI, treating traffic data as tensors and applying tensor completion for imputing missing values. Then, to account for contextual information, we compute the contextual scores of roads and reorganize the road indices according to the scores. Additionally, we utilize the Laplacian matrix to reveal spatial information and optimize the objective function to enhance imputation accuracy. Finally, we design a parallel algorithm for STDI on GPU for efficient computation. Extensive experiments demonstrate that the proposed method is superior to existing methods.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Traffic Speed Data Imputation Method Based on Tensor Completion
    Ran, Bin
    Tan, Huachun
    Feng, Jianshuai
    Liu, Ying
    Wang, Wuhong
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2015, 2015
  • [2] A Novel Spatial-Temporal Regularized Tensor Completion Algorithm for Traffic Data Imputation
    Lin, Kaitong
    Zheng, Haifeng
    Feng, Xinxin
    Chen, Zhonghui
    2018 10TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS AND SIGNAL PROCESSING (WCSP), 2018,
  • [3] Graph Spectral Regularized Tensor Completion for Traffic Data Imputation
    Deng, Lei
    Liu, Xiao-Yang
    Zheng, Haifeng
    Feng, Xinxin
    Chen, Youjia
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 10996 - 11010
  • [4] Tucker factorization-based tensor completion for robust traffic data imputation
    Lyu, Cheng
    Lu, Qing-Long
    Wu, Xinhua
    Antoniou, Constantinos
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2024, 160
  • [5] A Multi-Attention Tensor Completion Network for Spatiotemporal Traffic Data Imputation
    Wu, Xuesong
    Xu, Mengyun
    Fang, Jie
    Wu, Xiongwei
    IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (20) : 20203 - 20213
  • [6] Large-scale Traffic Data Imputation Using Matrix Completion on Graphs
    Han, Tianyang
    Wada, Kentaro
    Oguchi, Takashi
    2019 IEEE INTELLIGENT TRANSPORTATION SYSTEMS CONFERENCE (ITSC), 2019, : 2252 - 2258
  • [7] Low-Rank Autoregressive Tensor Completion for Spatiotemporal Traffic Data Imputation
    Chen, Xinyu
    Lei, Mengying
    Saunier, Nicolas
    Sun, Lijun
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (08) : 12301 - 12310
  • [8] A nonconvex low-rank tensor completion model for spatiotemporal traffic data imputation
    Chen, Xinyu
    Yang, Jinming
    Sun, Lijun
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2020, 117
  • [9] Traffic data imputation via tensor completion based on soft thresholding of Tucker core
    Goulart, J. H. de M.
    Kibangou, A. Y.
    Favier, G.
    TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2017, 85 : 348 - 362
  • [10] A nonconvex low-rank tensor completion model for spatiotemporal traffic data imputation
    Chen, Xinyu
    Yang, Jinming
    Sun, Lijun
    Transportation Research Part C: Emerging Technologies, 2020, 117