Overview of oxygen opacity experiments at the national ignition facility and investigation of potential systematic errors

被引:0
|
作者
Mayes, D. C. [1 ]
Hobbs, B. A. [1 ]
Heeter, R. F. [2 ]
Perry, T. S. [3 ]
Johns, H. M. [3 ]
Opachich, Y. P. [2 ]
Hohenberger, M. [2 ]
Bradley, P. A. [3 ]
Dutra, E. C. [4 ]
Fontes, C. J. [3 ]
Gallardo-Diaz, E. [5 ]
Montgomery, M. H. [1 ]
Robey, H. F. [3 ]
Wallace, M. S. [4 ]
Winget, D. E. [1 ]
机构
[1] Univ Texas Austin, Austin, TX 78712 USA
[2] Lawrence Livermore Natl Lab, Livermore, CA 94550 USA
[3] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
[4] Livermore Operat, Nevada Natl Secur Site, Livermore, CA 94550 USA
[5] Univ Nevada, Reno, NV 89557 USA
关键词
Stellar interior; Opacity; Oxygen; TRANSMISSION;
D O I
10.1016/j.hedp.2025.101177
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Experiments to measure oxygen opacity at stellar interior conditions have been performed at the National Ignition Facility in a Discovery Science campaign. These experiments utilize the Opacity-on-NIF platform with a sample comprised of O, Mg, and Si. The spectral data from the Opacity Spectrometer cover the 1000- 2000 eV photon energy range showing bound-free continuum absorption from O and line absorption from Mg and Si. DANTE and the Gated X-ray Detector are employed to measure the sample plasma's temperature and density, respectively. Initial data show lower transmission than expected by theoretical models, raising questions of whether potential background or data uniformity concerns could produce systematic errors in the inferred transmission. Here, we investigate three concerns thought to be important for the oxygen opacity data, including instrumental scattered background, sample self-emission non-uniformity, and backlight continuum non-uniformity. Additionally, we show the effect of a recently developed method to account for 2nd order crystal reflection. The total effect of these concerns on one experiment is found to be small compared to the observed difference between the inferred transmission and a model calculation at the inferred temperature and density. Thus, we conclude that these potential sources of systematic error cannot account for the observed difference, increasing the likelihood of areal effect due to the high temperature and density conditions. However, because this is only a single experiment, we cannot make a firm conclusion. More experiments measuring the opacity and necessary calibrations are needed to assess the reproducibility and uncertainty of this result.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Hohlraum modeling for opacity experiments on the National Ignition Facility
    Dodd, E. S.
    DeVolder, B. G.
    Martin, M. E.
    Krasheninnikova, N. S.
    Tregillis, I. L.
    Perry, T. S.
    Heeter, R. F.
    Opachich, Y. P.
    Moore, A. S.
    Kline, J. L.
    Johns, H. M.
    Liedahl, D. A.
    Cardenas, T.
    Olson, R. E.
    Wilde, B. H.
    Urbatsch, T. J.
    PHYSICS OF PLASMAS, 2018, 25 (06)
  • [2] Conceptual design of initial opacity experiments on the national ignition facility
    Heeter, R. F.
    Bailey, J. E.
    Craxton, R. S.
    DeVolder, B. G.
    Dodd, E. S.
    Garcia, E. M.
    Huffman, E. J.
    Iglesias, C. A.
    King, J. A.
    Kline, J. L.
    Liedahl, D. A.
    McKenty, P. W.
    Opachich, Y. P.
    Rochau, G. A.
    Ross, P. W.
    Schneider, M. B.
    Sherrill, M. E.
    Wilson, B. G.
    Zhang, R.
    Perry, T. S.
    JOURNAL OF PLASMA PHYSICS, 2017, 83 (01)
  • [3] Design of the opacity spectrometer for opacity measurements at the National Ignition Facility
    Ross, P. W.
    Heeter, R. F.
    Ahmed, M. F.
    Dodd, E.
    Huffman, E. J.
    Liedahl, D. A.
    King, J. A.
    Opachich, Y. P.
    Schneider, M. B.
    Perry, T. S.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11):
  • [4] Opacity spectrometer design for opacity measurements at the National Ignition Facility
    Ross, P. W.
    Ahmed, M. F.
    Bailey, J. E.
    Dunham, G. S.
    Emig, J. A.
    Heeter, R. F.
    Huffman, E. J.
    Perry, T. S.
    Opachich, Y. P.
    Liedahl, D. A.
    Schneider, M.
    Stone, G. F.
    TARGET DIAGNOSTICS PHYSICS AND ENGINEERING FOR INERTIAL CONFINEMENT FUSION IV, 2015, 9591
  • [5] Overview of the National Ignition Facility
    Moses, Edward I.
    FUSION SCIENCE AND TECHNOLOGY, 2008, 54 (02) : 361 - 366
  • [6] OVERVIEW OF THE NATIONAL IGNITION FACILITY
    Brereton, Sandra
    HEALTH PHYSICS, 2013, 104 (06): : 544 - 556
  • [7] Overview of the National Ignition Facility
    Murray, JR
    NIF LASER SYSTEM PERFORMANCE RATINGS, 1998, 3492 : 1 - 10
  • [8] Quantifying equation-of-state and opacity errors using integrated supersonic diffusive radiation flow experiments on the National Ignition Facility
    Guymer, T. M.
    Moore, A. S.
    Morton, J.
    Kline, J. L.
    Allan, S.
    Bazin, N.
    Benstead, J.
    Bentley, C.
    Comley, A. J.
    Cowan, J.
    Flippo, K.
    Garbett, W.
    Hamilton, C.
    Lanier, N. E.
    Mussack, K.
    Obrey, K.
    Reed, L.
    Schmidt, D. W.
    Stevenson, R. M.
    Taccetti, J. M.
    Workman, J.
    PHYSICS OF PLASMAS, 2015, 22 (04)
  • [9] PLANS FOR IGNITION EXPERIMENTS ON THE NATIONAL IGNITION FACILITY
    Moses, Edward I.
    CURRENT TRENDS IN INTERNATIONAL FUSION RESEARCH, PROCEEDINGS, 2009, 1154 : 53 - 59
  • [10] Preparing for ignition experiments on the National Ignition Facility
    Moses, Edward I.
    Meier, Wayne R.
    FUSION ENGINEERING AND DESIGN, 2008, 83 (7-9) : 997 - 1000