Exponential sum bound of Mordell and Hua

被引:0
|
作者
Cochrane, Todd [1 ]
机构
[1] Kansas State Univ, Dept Math, Manhattan, KS 66506 USA
关键词
exponential sums; character sums; SHARPER BOUNDS; CHALK;
D O I
10.4064/aa240318-13-12
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We improve estimates for the exponential sum S(f,q)=& sum;(q )(x=1)e(q)(f(x)), where e(q)(& sdot;) = e(2 pi i & sdot;/q) and f(x) is a primitive polynomial over Z. Let R(f,q)=|S(f,q)|/q1-1/k, with k the degree of f, and R(k,q) be the maximum value of R(f,q) over primitive polynomials of degree k. Among other results, we show that for any prime power pm with 5 <= p <= 2k-1 we have R(k,p(m)) <= p(2/p+1+1/p). In particular, R(k,p(m)) <= 2.815 for any k and prime power pm. We also show that for any positive integer q, R(k,q) <= e(k+1/2 pi log2k + 6logk-4.88891) for k < 4.62 & sdot;10(12) unconditionally, and for all k >= 1 on the assumption of the Riemann Hypothesis. Refined estimates are given for small k.
引用
收藏
页数:38
相关论文
共 50 条
  • [1] Mordell's exponential sum estimate revisited
    Bourgain, J
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 18 (02) : 477 - 499
  • [2] An improved Mordell type bound for exponential sums
    Cochrane, T
    Pinner, C
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 133 (02) : 313 - 320
  • [3] A further refinement of Mordell's bound on exponential sums
    Cochrane, T
    Coffelt, J
    Pinner, C
    ACTA ARITHMETICA, 2005, 116 (01) : 35 - 41
  • [4] Mordell type exponential sum estimates in fields of prime order
    Bourgain, J
    COMPTES RENDUS MATHEMATIQUE, 2004, 339 (05) : 321 - 325
  • [5] Optimal Ambiguity Functions and Weil’s Exponential Sum Bound
    John J. Benedetto
    Robert L. Benedetto
    Joseph T. Woodworth
    Journal of Fourier Analysis and Applications, 2012, 18 : 471 - 487
  • [6] Optimal Ambiguity Functions and Weil's Exponential Sum Bound
    Benedetto, John J.
    Benedetto, Robert L.
    Woodworth, Joseph T.
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2012, 18 (03) : 471 - 487
  • [7] On two problems of Mordell about exponential sums
    Yu, HB
    ACTA ARITHMETICA, 1998, 86 (02) : 149 - 154
  • [8] ON HUA ESTIMATES FOR EXPONENTIAL-SUMS
    CHALK, JHH
    MATHEMATIKA, 1987, 34 (68) : 115 - 123
  • [9] ON HUA ESTIMATE FOR EXPONENTIAL-SUMS
    LOXTON, JH
    SMITH, RA
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 1982, 26 (AUG): : 15 - 20
  • [10] AN EXPONENTIAL SUM
    MACHOVER, M
    AMERICAN MATHEMATICAL MONTHLY, 1983, 90 (02): : 138 - 139