Biomedical document-level relation extraction with thematic capture and localized entity pooling

被引:0
|
作者
Li, Yuqing [1 ]
Shao, Xinhui [1 ]
机构
[1] Northeastern Univ, Coll Sci, Dept Math, Shenyang, Peoples R China
关键词
Document-level relation extraction; Local entity pooling; Thematic capture;
D O I
10.1016/j.jbi.2024.104756
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In contrast to sentence-level relational extraction, document-level relation extraction poses greater challenges as a document typically contains multiple entities, and one entity may be associated with multiple other entities. Existing methods often rely on graph structures to capture path representations between entity pairs. However, this paper introduces a novel approach called local entity pooling that solely relies on the pre- training model to identify the bridge entity related to the current entity pair and generate the reasoning path representation. This technique effectively mitigates the multi-entity problem. Additionally, the model leverages the multi-entity and multi-label characteristics of the document to acquire the document's thematic representation, thereby enhancing the document-level relation extraction task. Experimental evaluations conducted on two biomedical datasets, CDR and GDA. Our TCLEP (Thematic C apture and L ocalized E ntity P ooling) model achieved the Macro-F1 scores of 71.7% and 85.3%, respectively. Simultaneously, we incorporated local entity pooling and thematic capture modules into the state-of-the-art model, resulting in performance improvements of 1.5% and 0.2% on the respective datasets. These results highlight the advanced performance of our proposed approach.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Document-Level Relation Extraction with Adaptive Thresholding and Localized Context Pooling
    Zhou, Wenxuan
    Huang, Kevin
    Ma, Tengyu
    Huang, Jing
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 14612 - 14620
  • [2] Entity-level Attention Pooling and Information Gating for Document-level Relation Extraction
    Zou, Beiji
    Chen, Zhi
    Zhu, Chengzhang
    Xiao, Ling
    Zeng, Meng
    2022 26TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2022, : 1407 - 1413
  • [3] Entity and Evidence Guided Document-Level Relation Extraction
    Huang, Kevin
    Qi, Peng
    Wang, Guangtao
    Ma, Tengyu
    Huang, Jing
    REPL4NLP 2021: PROCEEDINGS OF THE 6TH WORKSHOP ON REPRESENTATION LEARNING FOR NLP, 2021, : 307 - 315
  • [4] Document-level Relation Extraction With Entity and Context Information
    Huang, He-Yan
    Yuan, Chang-Sen
    Feng, Chong
    Zidonghua Xuebao/Acta Automatica Sinica, 2024, 50 (10): : 1953 - 1962
  • [5] Document-Level Relation Extraction with Entity Enhancement and Context Refinement
    Zou, Meng
    Yang, Qiang
    Qu, Jianfeng
    Li, Zhixu
    Liu, An
    Zhao, Lei
    Chen, Zhigang
    WEB INFORMATION SYSTEMS ENGINEERING - WISE 2021, PT II, 2021, 13081 : 347 - 362
  • [6] Enhancing Document-Level Relation Extraction by Entity Knowledge Injection
    Wang, Xinyi
    Wang, Zitao
    Sun, Weijian
    Hu, Wei
    SEMANTIC WEB - ISWC 2022, 2022, 13489 : 39 - 56
  • [7] Document-level relation extraction with Entity-Selection Attention
    Yuan, Changsen
    Huang, Heyan
    Feng, Chong
    Shi, Ge
    Wei, Xiaochi
    INFORMATION SCIENCES, 2021, 568 : 163 - 174
  • [8] Document-level Relation Extraction with Entity Interaction and Commonsense Knowledge
    Liu, Shen
    Shen, Xinshu
    Liu, Tingting
    Lan, Man
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [9] Document-level relation extraction with entity mentions deep attention
    Xu, Yangsheng
    Tian, Jiaxin
    Tang, Mingwei
    Tao, Linping
    Wang, Liuxuan
    COMPUTER SPEECH AND LANGUAGE, 2024, 84
  • [10] Three-stage document-level entity relation extraction
    Lu, Ben
    Wang, Xianchuan
    Ming, Wenkai
    Wang, Xianchao
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (04):