Contrasting Historical Trends in Equatorial Indian Ocean Zonal Sea Surface Temperature Gradient in CMIP6 Models

被引:0
|
作者
Soumya, Mohan [1 ,2 ]
Gopika, Suresh [1 ]
机构
[1] CSIR Natl Inst Oceanog, Panaji, Goa, India
[2] Acad Sci & Innovat Res AcSIR, Gaziabad, India
关键词
CESM2; CMIP6; Indian Ocean; SST; zonal gradient; TROPICAL PACIFIC; COUPLED MODEL; SYSTEM MODEL; DIPOLE; VARIABILITY; PATTERNS; EVENTS;
D O I
10.1002/joc.8832
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
The zonal sea surface temperature (SST) gradient in the tropical Indian Ocean (TIO) has been assessed using 50 climate models. Among these, 38 models exhibit an east-west negative gradient trend, indicating an intensified warming pattern in the Western Equatorial Indian Ocean (WEIO). This strong inter-model spread in representing the zonal SST gradient in the TIO mainly arises from the large variability of SST trends in the eastern Indian Ocean. The multi-model mean shows a westward SST gradient trend, which is approximately four-fold higher than the observed zonal gradient trend. However, models such as E3SM-1-1 and NESM3 realistically represent SST trends in both the eastern and western equatorial Indian Ocean regions, thereby capturing SST gradients close to observation. To investigate gradient variability and the underlying mechanisms, we categorised models into two groups, each comprising five models. The first group, comprising CESM2-FV2, EC-Earth3-Veg-LR, EC-Earth3-Veg, CAS-ESM2.0, and CIESM, demonstrates pronounced negative SST gradient trends. Conversely, the second group, consisting of CESM2-WACCM-FV2, CESM2, CESM2-WACCM, CMCC-CM2-SR5, and MIROC6, exhibits relatively subdued positive gradients, attributable to the slower warming of the WEIO. The inconsistent warming pattern formation, associated with eastward (westward) intensification of SST trends in positive (negative) gradient models, leads to larger gradient magnitudes compared to observations. The wind-evaporation-SST (WES) feedback plays a predominant role in shaping the SST warming pattern in both groups of models, while the mean state SST bias has a secondary role. The Bjerknes feedback is weak in positive zonal SST gradient models, whereas both Bjerknes and WES feedbacks act to enhance the zonal SST gradient in models with negative gradient trends. This study underscores the dominant role of air-sea interaction processes in forming SST warming patterns and highlights the unrealistic zonal SST gradient in the equatorial Indian Ocean.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Zonal current structure of the Indian Ocean in CMIP6 models
    Zhang, Jianbin
    Wang, Chunzai
    DEEP-SEA RESEARCH PART II-TOPICAL STUDIES IN OCEANOGRAPHY, 2023, 208
  • [2] Assessment of CMIP6 models' skill for tropical Indian Ocean sea surface temperature variability
    Halder, Subrota
    Parekh, Anant
    Chowdary, Jasti S.
    Gnanaseelan, Chellappan
    Kulkarni, Ashwini
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 2021, 41 (04) : 2568 - 2588
  • [3] CMIP6 projected sea surface temperature over the North Indian Ocean
    Naskar, Pravat Rabi
    Singh, Gyan Prakash
    Pattanaik, Dushmanta Ranjan
    JOURNAL OF EARTH SYSTEM SCIENCE, 2024, 133 (04)
  • [4] Assessment of the potential of CMIP6 models in simulating the sea surface temperature variability over the tropical Indian Ocean
    Biswarup Bhattacharya
    Sachiko Mohanty
    Charu Singh
    Theoretical and Applied Climatology, 2022, 148 : 585 - 602
  • [5] Assessment of the potential of CMIP6 models in simulating the sea surface temperature variability over the tropical Indian Ocean
    Bhattacharya, Biswarup
    Mohanty, Sachiko
    Singh, Charu
    THEORETICAL AND APPLIED CLIMATOLOGY, 2022, 148 (1-2) : 585 - 602
  • [6] Assessment of the Southern Ocean Sea Surface Temperature Biases in CMIP5 and CMIP6 Models
    Gao, Zhen
    Zhao, Shichang
    Liu, Qinyu
    Long, Shang-Min
    Sun, Shantong
    JOURNAL OF OCEAN UNIVERSITY OF CHINA, 2024, 23 (05) : 1135 - 1150
  • [7] Origins of Southern Ocean warm sea surface temperature bias in CMIP6 models
    Luo, Fengyun
    Ying, Jun
    Liu, Tongya
    Chen, Dake
    NPJ CLIMATE AND ATMOSPHERIC SCIENCE, 2023, 6 (01)
  • [8] Assessment of the Southern Ocean Sea Surface Temperature Biases in CMIP5 and CMIP6 Models
    GAO Zhen
    ZHAO Shichang
    LIU Qinyu
    LONG ShangMin
    SUN Shantong
    Journal of Ocean University of China, 2024, 23 (05) : 1135 - 1150
  • [9] Origins of Southern Ocean warm sea surface temperature bias in CMIP6 models
    Fengyun Luo
    Jun Ying
    Tongya Liu
    Dake Chen
    npj Climate and Atmospheric Science, 6
  • [10] Seasonal extrema of sea surface temperature in CMIP6 models
    Wang, Yanxin
    Heywood, Karen J.
    Stevens, David P.
    Damerell, Gillian M.
    OCEAN SCIENCE, 2022, 18 (03) : 839 - 855