Embedding Hierarchical Tree Structure of Concepts in Knowledge Graph Embedding

被引:0
|
作者
Yu, Jibin [1 ]
Zhang, Chunhong [2 ]
Hu, Zheng [1 ]
Ji, Yang [2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Networking & Switching Technol, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Key Lab Universal Wireless Commun, Minist Educ, Beijing 100876, Peoples R China
关键词
knowledge graph embedding; concept; hierarchical structure; representation learning;
D O I
10.3390/electronics13224486
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Knowledge Graph Embedding aims to encode both entities and relations into a continuous low-dimensional vector space, which is crucial for knowledge-driven application scenarios. As abstract entities in knowledge graphs, concepts inherently possess unique hierarchical structures and encompass rich semantic information. Although existing methods for jointly embedding concepts and instances achieve promising performance, they still face two issues: (1) They fail to explicitly reconstruct the hierarchical tree structure of concepts in the embedding space; (2) They ignore disjoint concept pairs and overlapping concept pairs derived from concepts. In this paper, we propose a novel concept representation approach, called Hyper Spherical Cone Concept Embedding (HCCE), to explicitly model the hierarchical tree structure of concepts in the embedding space. Specifically, HCCE represents each concept as a hyperspherical cone and each instance as a vector, maintaining the anisotropy of concept embeddings. We propose two variant methods to explore the impact of embedding concepts and instances in the same or different spaces. Moreover, we design score functions for disjoint concept pairs and overlapping concept pairs, using relative position relations to incorporate them seamlessly into our geometric models. Experimental results on three benchmark datasets show that HCCE outperforms most existing state-of-the-art methods on concept-related triples and achieves competitive results on instance-related triples. The visualization of embedding results intuitively shows the hierarchical tree structure of concepts in the embedding space.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Knowledge Graph Embedding with Hierarchical Relation Structure
    Zhang, Zhao
    Zhuang, Fuzhen
    Qu, Meng
    Lin, Fen
    He, Qing
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 3198 - 3207
  • [2] Knowledge graph embedding with concepts
    Guan, Niannian
    Song, Dandan
    Liao, Lejian
    KNOWLEDGE-BASED SYSTEMS, 2019, 164 : 38 - 44
  • [3] Differentiating Concepts and Instances for Knowledge Graph Embedding
    Lv, Xin
    Hou, Lei
    Li, Juanzi
    Liu, Zhiyuan
    2018 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP 2018), 2018, : 1971 - 1979
  • [4] Knowledge Graph Embedding for Hierarchical Entities Based on Auto-Embedding Size
    Zhang, Pengfei
    Zhang, Xiaoxue
    Fang, Yang
    Liao, Jinzhi
    Ma, Wubin
    Tan, Zhen
    Xiao, Weidong
    MATHEMATICS, 2024, 12 (20)
  • [5] A Hierarchical Knowledge Graph Embedding Framework for Link Prediction
    Liu, Shuang
    Hou, Chengwang
    Meng, Jiana
    Chen, Peng
    Kolmanic, Simon
    IEEE ACCESS, 2024, 12 : 173338 - 173350
  • [6] Hierarchical attentive knowledge graph embedding for personalized recommendation
    Sha, Xiao
    Sun, Zhu
    Zhang, Jie
    ELECTRONIC COMMERCE RESEARCH AND APPLICATIONS, 2021, 48
  • [7] Knowledge Graph Embedding Combining with Hierarchical Type Information
    Zhang J.-D.
    Li J.
    Ruan Jian Xue Bao/Journal of Software, 2022, 33 (09):
  • [8] Multisource hierarchical neural network for knowledge graph embedding
    Jiang, Dan
    Wang, Ronggui
    Xue, Lixia
    Yang, Juan
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 237
  • [9] Knowledge Graph Representation via Hierarchical Hyperbolic Neural Graph Embedding
    Wang, Shen
    Wei, Xiaokai
    dos Santos, Cicero Nogueira
    Wang, Zhiguo
    Nallapati, Ramesh
    Arnold, Andrew
    Yu, Philip S.
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 540 - 549
  • [10] JECI: A Joint Knowledge Graph Embedding Model for Concepts and Instances
    Zhou, Jing
    Wang, Peng
    Pan, Zhe
    Xu, Zhongkai
    SEMANTIC TECHNOLOGY, JIST 2019: PROCEEDINGS, 2020, 12032 : 82 - 98