Non-existence of Solutions for a Non-Gaussian Equation in Fractional Time with Osgood Type Non-linearity

被引:0
|
作者
Solis, Soveny [1 ]
Vergara, Vicente [2 ]
机构
[1] Escuela Super Politecn Litoral, Fac Ciencias Nat & Matemat, Dept Matemat, Guayaquil, Ecuador
[2] Univ Concepcion, Fac Ciencias Fis & Matemat, Dept Matemat, Concepcion, Chile
关键词
Non-existence of solutions (primary); Blow-up; Osgood-type functions; Super-solutions; Critical exponents; Non-Gaussian process; FUNDAMENTAL SOLUTION; DIFFUSION;
D O I
10.1007/s10884-025-10411-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Osgood functions in the source term are used to produce results for non-existence of local solutions into the framework of non-Gaussian diffusion equations. The critical exponent for non-existence of local solutions is found to depend on the fractional derivative, the non-Gaussian diffusion and the non-linear term. The instantaneous blow-up phenomenon is studied by exploiting estimates of the fundamental solutions. Nevertheless, theory of super-solutions and fixed points are combined for showing existence of global solutions. In this case, the critical exponent for existence of global solutions depends only on the last two parameters above.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Non-existence of local solutions for semilinear heat equations of Osgood type
    Laister, R.
    Robinson, J. C.
    Sierzega, M.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 255 (10) : 3020 - 3028
  • [2] NON-EXISTENCE OF POSITIVE SOLUTIONS FOR A HIGHER ORDER FRACTIONAL EQUATION
    Cui, Xuewei
    Yu, Mei
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2019, 39 (03) : 1379 - 1387
  • [3] Non-Existence of Global Solutions for a Fractional Wave-Diffusion Equation
    Berbiche, Mohamed
    Hakem, Ali
    JOURNAL OF PARTIAL DIFFERENTIAL EQUATIONS, 2012, 25 (01): : 1 - 20
  • [4] Non-existence of meromorphic solutions of a Fermat type functional equation
    Yang, Liang-Zhong
    Zhang, Ji-Long
    AEQUATIONES MATHEMATICAE, 2008, 76 (1-2) : 140 - 150
  • [5] Non-existence of meromorphic solutions of a Fermat type functional equation
    Lian-Zhong Yang
    Ji-Long Zhang
    Aequationes mathematicae, 2008, 76 : 140 - 150
  • [6] Non-existence of local solutions of semilinear heat equations of Osgood type in bounded domains
    Laister, Robert
    Robinson, James C.
    Sierzega, Mikolaj
    COMPTES RENDUS MATHEMATIQUE, 2014, 352 (7-8) : 621 - 626
  • [7] Non-Linearity Flux of Fractional Transport Density Equation in Traffic Flow with Solutions
    Soliby, Rfaat Moner
    Jamaian, Siti Suhana
    SMART CITIES, 2022, 5 (04): : 1655 - 1669
  • [8] Existence and non-existence of global solutions of a non-local wave equation
    Ackleh, AS
    Deng, K
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2004, 27 (15) : 1747 - 1754
  • [9] Solutions of the modified Ostrovskii equation with cubic non-linearity
    Nikitenkova, SP
    Stepanyants, YA
    Chikhladze, LM
    PMM JOURNAL OF APPLIED MATHEMATICS AND MECHANICS, 2000, 64 (02): : 267 - 274
  • [10] Periodic solutions of Duffing equation with strong non-linearity
    Marinca, Vasile
    Herisanu, Nicolae
    CHAOS SOLITONS & FRACTALS, 2008, 37 (01) : 144 - 149