Adaptive Whole-Brain Dynamics Predictive Method: Relevancy to Mental Disorders

被引:0
|
作者
Zhang, Qian-Yun [1 ,2 ]
Su, Chun-Wang [1 ,2 ]
Luo, Qiang [3 ,4 ,5 ,6 ]
Grebogi, Celso [7 ,8 ]
Huang, Zi-Gang [1 ,2 ]
Jiang, Junjie [1 ,2 ]
机构
[1] Xi An Jiao Tong Univ, Inst Hlth & Rehabil Sci, Sch Life Sci & Technol, Key Lab Biomed Informat Engn,Minist Educ, Xian, Peoples R China
[2] Xi An Jiao Tong Univ, Res Ctr Brain Inspired Intelligence, Sch Life Sci & Technol, Xian 710049, Shaanxi, Peoples R China
[3] Fudan Univ, Huashan Hosp, Natl Clin Res Ctr Aging & Med, Shanghai 200433, Peoples R China
[4] Fudan Univ, Inst Brain Sci, Shanghai 200032, Peoples R China
[5] Fudan Univ, Human Phenome Inst, Shanghai 200241, Peoples R China
[6] East China Normal Univ, Sch Psychol & Cognit Sci, Shanghai 200241, Peoples R China
[7] Univ Aberdeen, Inst Complex Syst & Math Biol, Aberdeen AB24 3UE, Scotland
[8] Xian Univ Technol, Sch Automat & Informat Engn, Xian 710048, Shaanxi, Peoples R China
关键词
STATE FUNCTIONAL CONNECTIVITY; CINGULATE CORTEX; ANTERIOR CINGULATE; MAJOR DEPRESSION; SOCIAL COGNITION; AUTISM; MRI; RESPONSES; THALAMUS; SINGLE;
D O I
10.34133/research.0648
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Hopf whole-brain model, based on structural connectivity, overcomes limitations of traditional structural or functional connectivity-focused methods by incorporating heterogeneity parameters, quantifying dynamic brain characteristics in healthy and diseased states. Traditional parameter fitting techniques lack precision, restricting broader use. To address this, we validated parameter fitting methods using simulated networks and synthetic models, introducing improvements such as individual-specific initialization and optimized gradient descent, which reduced individual data loss. We also developed an approximate loss function and gradient adjustment mechanism, enhancing parameter fitting accuracy and stability. Applying this refined method to datasets for major depressive disorder (MDD) and autism spectrum disorder (ASD), we identified differences in brain regions between patients and healthy controls, explaining related anomalies. This rigorous validation is crucial for clinical application, paving the way for precise neuropathological identification and novel treatments in neuropsychiatric research, demonstrating substantial potential in clinical neurology.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] The predictive value of multiparameter image of whole-brain structures in autism spectrum disorders
    Ecker, C.
    INTERNATIONAL JOURNAL OF NEUROPSYCHOPHARMACOLOGY, 2012, 15 : 21 - 21
  • [2] Whole-brain dynamics of human sensorimotor adaptation
    Standage, Dominic, I
    Areshenkoff, Corson N.
    Gale, Daniel J.
    Nashed, Joseph Y.
    Flanagan, J. Randall
    Gallivan, Jason P.
    CEREBRAL CORTEX, 2023, 33 (08) : 4761 - 4778
  • [3] Whole-brain modelling: an essential tool for understanding brain dynamics
    Patow, Gustavo
    Martin, Ignacio
    Sanz Perl, Yonatan
    Kringelbach, Morten L.
    Deco, Gustavo
    NATURE REVIEWS METHODS PRIMERS, 2024, 4 (01):
  • [4] A contrast-adaptive method for simultaneous whole-brain and lesion segmentation in multiple sclerosis
    Cerri, Stefano
    Puonti, Oula
    Meier, Dominik S.
    Wuerfel, Jens
    Muhlau, Mark
    Siebner, Hartwig R.
    Van Leemput, Koen
    NEUROIMAGE, 2021, 225
  • [5] The Menstrual Cycle Modulates Whole-Brain Turbulent Dynamics
    De Filippi, Eleonora
    Uribe, Carme
    Avila-Varela, Daniela S.
    Martinez-Molina, Noelia
    Gashaj, Venera
    Pritschet, Laura
    Santander, Tyler
    Jacobs, Emily G.
    Kringelbach, Morten L.
    Sanz Perl, Yonatan
    Deco, Gustavo
    Escrichs, Anira
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [6] Whole-Brain Neural Dynamics of Probabilistic Reward Prediction
    Bach, Dominik R.
    Symmonds, Mkael
    Barnes, Gareth
    Dolan, Raymond J.
    JOURNAL OF NEUROSCIENCE, 2017, 37 (14): : 3789 - 3798
  • [7] Tracking Whole-Brain Connectivity Dynamics in the Resting State
    Allen, Elena A.
    Damaraju, Eswar
    Plis, Sergey M.
    Erhardt, Erik B.
    Eichele, Tom
    Calhoun, Vince D.
    CEREBRAL CORTEX, 2014, 24 (03) : 663 - 676
  • [8] Estimating whole-brain dynamics by using spectral clustering
    Cribben, Ivor
    Yu, Yi
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES C-APPLIED STATISTICS, 2017, 66 (03) : 607 - 627
  • [9] Whole-brain Dynamics are Shifted in Animals with Learned Helplessness
    Mirrione, Martine
    Li, Bo
    Shea, Stephen
    Fritz, Henn
    NEUROPSYCHOPHARMACOLOGY, 2013, 38 : S254 - S254
  • [10] Search for singularity cells at the onset of brain disorders using whole-brain imaging
    Hashimoto, Hitoshi
    Nakazawa, Takanobu
    BIOPHYSICS AND PHYSICOBIOLOGY, 2024, 21