In the context of a wind farm project, the wind resource is assessed to predict the power output and the optimal positioning of wind turbines. This requires taking wind measurements on the site of interest and extrapolating these to the long term using so-called "measure, correlate, and predict" (MCP) methods. Sensor, power supply, and software failures are common phenomena. These disruptions cause gaps in the measured data, which can especially be long in offshore measurement campaigns due to harsh weather conditions causing system failures and preventing servicing and redeployment. The present study investigates the effect of measurement data gaps on long-term offshore wind estimates by analyzing the bias they introduce in the parameters commonly used for wind resource assessment. Furthermore, it aims to show how filling the gaps can mitigate their effect. To achieve this, we perform investigations for three offshore sites in Europe with 2 years of concurrent measurements. We use reanalysis data and various MCP methods to fill gaps in the measured data and extrapolate these data to the long term. Current standards demand high data availability (80 % or 90 %) for wind measurement campaigns, so we expect that the effect of missing data on the uncertainty in long-term extrapolations is of the same order of magnitude as other uncertainty components such as the measurement uncertainty or the inter-annual variability. Nevertheless, our results show that the effects of gaps are considerably smaller than the other uncertainty components. For instance, gaps of 180 d cause an average deviation of the long-term mean wind speed of less than 0.04 ms-1 and a 95th percentile deviation of less than 0.075 ms-1 for all tested sites. Due to the low impact of gaps, gap filling does not have the potential to significantly reduce the uncertainty in the long-term extrapolation.
机构:
Korea Elect Power Res Inst, Daejeon, South Korea
Seoul Natl Univ, Sch Earth & Environm Sci, Seoul, South KoreaKorea Elect Power Res Inst, Daejeon, South Korea
Kim, Ji-Young
论文数: 引用数:
h-index:
机构:
Oh, Ki-Yong
Kim, Min-Suek
论文数: 0引用数: 0
h-index: 0
机构:
Korea Elect Power Res Inst, Daejeon, South KoreaKorea Elect Power Res Inst, Daejeon, South Korea
Kim, Min-Suek
Kim, Kwang-Yul
论文数: 0引用数: 0
h-index: 0
机构:
Seoul Natl Univ, Sch Earth & Environm Sci, Seoul, South KoreaKorea Elect Power Res Inst, Daejeon, South Korea
机构:
Zhongnan Engn Corp Ltd, Power Construct Corp China, Changsha 410014, Peoples R ChinaZhongnan Engn Corp Ltd, Power Construct Corp China, Changsha 410014, Peoples R China
Hu, Yuzhi
Li, Jiangxia
论文数: 0引用数: 0
h-index: 0
机构:
Changsha Univ Sci & Technol, Sch Hydraul Engn, Changsha 410114, Peoples R China
Key Lab Water Sediment Sci & Water Disaster Preve, Changsha 410114, Peoples R ChinaZhongnan Engn Corp Ltd, Power Construct Corp China, Changsha 410014, Peoples R China