Coding Small Group Communication with AI: RNNs and Transformers with Context

被引:0
|
作者
Pilny, Andrew [1 ,2 ]
Bonito, Joseph [3 ]
Schecter, Aaron [4 ]
机构
[1] Univ Kentucky, Dept Commun, Lexington, KY USA
[2] Univ Kentucky, Dept Sociol, Lexington, KY USA
[3] Univ Arizona, Dept Commun, Tucson, AZ USA
[4] Univ Georgia, Terry Coll Business, Management Informat Syst, Athens, GA USA
基金
美国国家科学基金会;
关键词
communication; content analysis; meetings; interaction analysis; ARGUMENT;
D O I
10.1177/10464964251314197
中图分类号
B849 [应用心理学];
学科分类号
040203 ;
摘要
This study compares the performance of recurrent neural networks (RNNs) and transformer-based models (DistilBERT) in classifying utterances as dialogue acts. The results show that transformers consistently outperform RNNs, highlighting their usefulness in coding small group interaction. Furthermore, the study explores the impact of incorporating context, in the form of preceding and following utterances. The findings reveal that adding context leads to modest improvements in model performance. Moreover, in some cases, adding context can lead to a slight decrease in performance. The study discusses the implications of these findings for small group researchers employing AI models for text classification tasks.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] A COMPREHENSIVE EVALUATION OF AI TECHNIQUES FOR AIR QUALITY INDEX PREDICTION: RNNS AND TRANSFORMERS
    Andrade, Pablo Andres Buestan
    Zamora, Pedro Esteban Carrion
    Lara, Anthony Eduardo Chamba
    Piedra, Juan Pablo Pazmino
    INGENIUS-REVISTA DE CIENCIA Y TECNOLOGIA, 2025, (33): : 60 - 74
  • [2] Transformed by Transformers: Navigating the AI Coding Revolution for Computing Education An ITiCSE Working Group Conducted by Humans
    Prather, James
    Denny, Paul
    Leinonen, Juho
    Becker, Brett A.
    Albluwi, Ibrahim
    Caspersen, Michael E.
    Craig, Michelle
    Keuning, Hieke
    Kiesler, Natalie
    Kohn, Tobias
    Luxton-Reilly, Andrew
    MacNeil, Stephen
    Petersen, Andrew
    Pettit, Raymond
    Reeves, Brent N.
    Savelka, Jaromir
    PROCEEDINGS OF THE 2023 CONFERENCE ON INNOVATION AND TECHNOLOGY IN COMPUTER SCIENCE EDUCATION, ITICSE 2023, VOL. 2, 2023, : 561 - 562
  • [3] Collective AI: context awareness via communication
    Kornienko, S.
    Kornienko, O.
    Levi, P.
    19TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE (IJCAI-05), 2005, : 1464 - 1470
  • [4] FEEDBACK IN SMALL GROUP COMMUNICATION
    SCHEIDEL, TM
    CROWELL, L
    QUARTERLY JOURNAL OF SPEECH, 1966, 52 (03) : 273 - 278
  • [5] Methodological issues in developing a multi-dimensional coding procedure for small-group chat communication
    Strijbos, Jan-Willem
    Stahl, Gerry
    LEARNING AND INSTRUCTION, 2007, 17 (04) : 394 - 404
  • [6] COMMUNICATION AND SMALL GROUP - PHILLIPS,GM
    KLINE, JA
    SPEECH TEACHER, 1974, 23 (02): : 180 - 180
  • [7] The Conversation for Neurodermatitis (Small Group Communication)
    Nemat, K.
    ALLERGOLOGIE, 2017, 40 (04) : 169 - 169
  • [8] COMMUNICATION AND SMALL GROUP - PHILLIPS,GM
    BORNEMAN, EH
    JOURNAL OF COMMUNICATION DISORDERS, 1967, 1 (01) : 101 - 101
  • [9] Group Communication With Context Codec for Lightweight Source Separation
    Luo, Yi
    Han, Cong
    Mesgarani, Nima
    IEEE-ACM TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2021, 29 : 1752 - 1761
  • [10] GROUP COMMUNICATION IN CONTEXT: STUDIES OF BONA FIDE GROUPS
    Galanes, Gloria J.
    SOUTHERN COMMUNICATION JOURNAL, 2005, 70 (02) : 177 - 178