MECardNet: A novel multi-scale convolutional ensemble model with adaptive deep supervision for precise cardiac MRI segmentation

被引:0
|
作者
Aghapanah, Hamed [1 ]
Rasti, Reza [2 ,3 ]
Tabesh, Faezeh [4 ]
Pouraliakbar, Hamidreza [5 ]
Sanei, Hamid [4 ]
Kermani, Saeed [1 ]
机构
[1] Isfahan Univ Med Sci, Sch Adv Technol Med, Dept Bioelect & Biomed Engn, Esfahan, Iran
[2] Univ Isfahan, Fac Engn, Dept Biomed Engn, Esfahan, Iran
[3] Duke Univ, Dept Biomed Engn, Durham, NC 27708 USA
[4] Isfahan Univ Med Sci, Cardiovasc Res Inst, Esfahan, Iran
[5] Iran Univ Med Sci, Rajaie Cardiovasc Med & Res Ctr, Tehran, Iran
关键词
Adaptive Deep Supervision; Cardiac MRI Segmentation; Deep Learning; Ensemble of Attentions; Mixture of Experts; NET; NETWORK; FUSION;
D O I
10.1016/j.bspc.2024.106919
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Accurate segmentation of the left ventricle, right ventricle, and myocardium is essential for estimating key cardiac parameters in diagnostic procedures. However, automating Cardiovascular Magnetic Resonance Imaging (CMRI) segmentation faces challenges from diverse imaging vendors and protocols. This study introduces MECardNet framework as an innovative multiclass CMRI segmentation model, representing a prominent advancement in the field. MECardNet leverages a Multiscale Convolutional Mixture of Experts (MCME) ensemble technique with Adaptive Deep Supervision, seamlessly integrated into the U-Net architecture. The MCME framework improves representation learning in the U-Net workflow. It does this by adaptively adjusting the contribution of U-Net layers in the ensemble for better data modeling. Additionally, MECardNet incorporates a cross-additive attention mechanism, an EfficientNetV2L backbone, and a specialized compound loss function, leading to enhanced model performance. Through 10-fold Cross-Validation (CV) analysis on the ACDC dataset, MECardNet surpasses baseline models and state-of-the-art methods, showcasing promising performance levels with evaluation metrics such as Dice Similarity Coefficient (DSC) of 96.1 f 0.4 %, Jaccard coefficient of 92.2 f 0.4 %, Hausdorff distance of 1.7 f 0.1 and mean absolute distance of 1.6 f 0.1. Further validation on the M&Ms-2 dataset and a local dataset confirms promising performance of MECardNet, with DSC of 94.3 f 0.7 % and 94.5 f 0.6 %, respectively. The proposed MECardNet framework establishes a new benchmark in CMRI segmentation by outperforming existing models, offering efficient and reliable computer-aided technologies for cardiovascular disease diagnosis, with the potential for significant impact in the field. Researchers can access MECardNet repository and results on GitHub1 for comprehensive exploration and utilization.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Multi-scale brain tumor segmentation combined with deep supervision
    Bingbao Yan
    Miao Cao
    Weifang Gong
    Benzheng Wei
    International Journal of Computer Assisted Radiology and Surgery, 2022, 17 : 561 - 568
  • [2] Multi-scale brain tumor segmentation combined with deep supervision
    Yan, Bingbao
    Cao, Miao
    Gong, Weifang
    Wei, Benzheng
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2022, 17 (03) : 561 - 568
  • [3] SEMANTIC SEGMENTATION OF AERIAL IMAGERY VIA MULTI-SCALE SHUFFLING CONVOLUTIONAL NEURAL NETWORKS WITH DEEP SUPERVISION
    Chen, Kaiqiang
    Weinmann, Michael
    Sun, Xian
    Yan, Menglong
    Hinz, Stefan
    Jutzi, Boris
    Weinmann, Martin
    ISPRS TC I MID-TERM SYMPOSIUM INNOVATIVE SENSING - FROM SENSORS TO METHODS AND APPLICATIONS, 2018, 4-1 : 29 - 36
  • [4] Fully convolutional multi-scale residual DenseNets for cardiac segmentation and automated cardiac diagnosis using ensemble of classifiers
    Khened, Mahendra
    Kollerathu, Varghese Alex
    Krishnamurthi, Ganapathy
    MEDICAL IMAGE ANALYSIS, 2019, 51 : 21 - 45
  • [5] Multi-scale deep learning ensemble for segmentation of endometriotic lesions
    Podda A.S.
    Balia R.
    Barra S.
    Carta S.
    Neri M.
    Guerriero S.
    Piano L.
    Neural Computing and Applications, 2024, 36 (24) : 14895 - 14908
  • [6] MMNet: A multi-scale deep learning network for the left ventricular segmentation of cardiac MRI images
    Wang, Ziyue
    Peng, Yanjun
    Li, Dapeng
    Guo, Yanfei
    Zhang, Bin
    APPLIED INTELLIGENCE, 2022, 52 (05) : 5225 - 5240
  • [7] MMNet: A multi-scale deep learning network for the left ventricular segmentation of cardiac MRI images
    Ziyue Wang
    Yanjun Peng
    Dapeng Li
    Yanfei Guo
    Bin Zhang
    Applied Intelligence, 2022, 52 : 5225 - 5240
  • [8] A multi-scale strategy for deep semantic segmentation with convolutional neural networks
    Zhao, Bonan
    Zhang, Xiaoshan
    Li, Zheng
    Hu, Xianliang
    NEUROCOMPUTING, 2019, 365 : 273 - 284
  • [9] Multi-scale deep context convolutional neural networks for semantic segmentation
    Quan Zhou
    Wenbing Yang
    Guangwei Gao
    Weihua Ou
    Huimin Lu
    Jie Chen
    Longin Jan Latecki
    World Wide Web, 2019, 22 : 555 - 570
  • [10] Multi-scale deep context convolutional neural networks for semantic segmentation
    Zhou, Quan
    Yang, Wenbing
    Gao, Guangwei
    Ou, Weihua
    Lu, Huimin
    Chen, Jie
    Latecki, Longin Jan
    WORLD WIDE WEB-INTERNET AND WEB INFORMATION SYSTEMS, 2019, 22 (02): : 555 - 570