Automated Machine Learning in Dentistry: A Narrative Review of Applications, Challenges, and Future Directions

被引:0
|
作者
Shujaat, Sohaib [1 ,2 ]
机构
[1] King Saud Bin Abdulaziz Univ Hlth Sci, Coll Dent, King Abdullah Int Med Res Ctr, Dept Maxillofacial Surg & Diagnost Sci,Minist Natl, POB 3660, Riyadh 11481, Saudi Arabia
[2] Univ Hosp Leuven, Fac Med, Dept Imaging & Pathol, OMFS IMPATH Res Grp,KU Leuven & Oral & Maxillofaci, B-3000 Leuven, Belgium
关键词
artificial intelligence; automated machine learning; dentistry; oral diagnosis; precision medicine; CLASSIFICATION; PREDICTION; CARIES;
D O I
10.3390/diagnostics15030273
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
The adoption of automated machine learning (AutoML) in dentistry is transforming clinical practices by enabling clinicians to harness machine learning (ML) models without requiring extensive technical expertise. This narrative review aims to explore the impact of autoML in dental applications. A comprehensive search of PubMed, Scopus, and Google Scholar was conducted without time and language restrictions. Inclusion criteria focused on studies evaluating autoML applications and performance for dental tasks. Exclusion criteria included non-dental studies, single-case reports, and conference abstracts. This review highlights multiple promising applications of autoML in dentistry. Diagnostic tasks showed high accuracy, such as 95.4% precision in dental implant classification and 92% accuracy in paranasal sinus disease detection. Predictive tasks also demonstrated promise, including 84% accuracy for ICU admissions due to dental infections and 93.9% accuracy in orthodontic extraction predictions. AutoML frameworks like Google Vertex AI and H2O AutoML emerged as key tools for these applications. AutoML shows great promise in transforming dentistry by facilitating data-driven decision-making and improving patient care quality through accessible, automated solutions. Future advancements should focus on enhancing model interpretability, developing large and annotated datasets, and creating pipelines tailored to dental tasks. Educating clinicians on autoML and integrating domain-specific knowledge into automated platforms could further bridge the gap between complex ML technology and practical dental applications.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] A comprehensive review of machine learning applications for internet of nano things: challenges and future directions
    Aryan Rana
    Deepika Gautam
    Pankaj Kumar
    Kranti Kumar
    Athanasios V. Vasilakos
    Ashok Kumar Das
    Vivekananda Bhat K
    Artificial Intelligence Review, 58 (7)
  • [2] A Systematic Literature Review on Multimodal Machine Learning: Applications, Challenges, Gaps and Future Directions
    Barua, Arnab
    Ahmed, Mobyen Uddin
    Begum, Shahina
    IEEE ACCESS, 2023, 11 : 14804 - 14831
  • [3] Machine learning for stuttering identification: Review, challenges and future directions
    Sheikh, Shakeel A.
    Sahidullah, Md
    Hirsch, Fabrice
    Ouni, Slim
    NEUROCOMPUTING, 2022, 514 : 385 - 402
  • [4] Exploring the Landscape of Machine Learning Applications in Neurosurgery: A Bibliometric Analysis and Narrative Review of Trends and Future Directions
    Levy, Adam S.
    Bhatia, Shovan
    Merenzon, Martin A.
    Andryski, Allie L.
    Rivera, Cameron A.
    Daggubati, Lekhaj C.
    Di, Long
    Shah, Ashish H.
    Komotar, Ricardo J.
    Ivan, Michael E.
    WORLD NEUROSURGERY, 2024, 181 : 108 - 115
  • [5] Machine Learning Applications in Manufacturing-Challenges, Trends, and Future Directions
    Manta-Costa, Alexandre
    Araujo, Sara Oleiro
    Peres, Ricardo Silva
    Barata, Jose
    IEEE OPEN JOURNAL OF THE INDUSTRIAL ELECTRONICS SOCIETY, 2024, 5 : 1085 - 1103
  • [6] A Review of Applications of Machine Learning in Mammography and Future Challenges
    Batchu, Sai
    Liu, Fan
    Amireh, Ahmad
    Waller, Joseph
    Umair, Muhammad
    ONCOLOGY, 2021, 99 (08) : 483 - 490
  • [7] A review on the applications of machine learning and deep learning to groundwater salinity modeling: present status, challenges, and future directions
    Dilip Kumar Roy
    Tapash Kumar Sarkar
    Tasnia Hossain Munmun
    Chitra Rani Paul
    Bithin Datta
    Discover Water, 5 (1):
  • [8] Machine and Deep Learning for IoT Security and Privacy: Applications, Challenges, and Future Directions
    Bharati, Subrato
    Podder, Prajoy
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [9] Artificial Intelligence in Thyroidology: A Narrative Review of the Current Applications, Associated Challenges, and Future Directions
    Toro-Tobon, David
    Loor-Torres, Ricardo
    Duran, Mayra
    Fan, Jungwei W.
    Ospina, Naykky Singh
    Wu, Yonghui
    Brito, Juan P.
    THYROID, 2023, 33 (08) : 903 - 917
  • [10] Machine learning solutions for renewable energy systems: Applications, challenges, limitations, and future directions
    Allal, Zaid
    Noura, Hassan N.
    Salman, Ola
    Chahine, Khaled
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2024, 354