Dual-view embedding for hyper-relational knowledge graphs with hierarchical structure

被引:1
|
作者
Liu, Shuang [1 ]
Xu, Liangyang [1 ]
Liu, Yiying [1 ]
Kolmanic, Simon [2 ]
机构
[1] Dalian Minzu Univ, Sch Comp Sci & Engn, 31 Jinshi Rd, Dalian 116600, Peoples R China
[2] Univ Maribor, Fac Elect Engn & Comp Sci, Koroska Cesta 46, Maribor 2000, Slovenia
关键词
Hyper-relational knowledge graph; Dual-view embedding; Link prediction; Graph neural network; LEARNING REPRESENTATIONS;
D O I
10.1007/s10844-024-00916-2
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study proposes a dual-view hyper-relational knowledge graph embedding model aimed at addressing the challenges of embedding complex relationships in knowledge graphs. Traditional methods primarily handle simple triplet relations and struggle with the complexity of hyper-relations. By integrating instance view and ontology view, our model, DVHE, captures hierarchical structural information between entities and is applied to link prediction tasks. Experimental results show that DVHE significantly outperforms existing single-view and dual-view models across multiple benchmark datasets, particularly in handling complex hyper-relations and hierarchical information. Ablation studies further validate the effectiveness of the model's components, providing new insights for the development of knowledge graph embeddings.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] DHGE: Dual-View Hyper-Relational Knowledge Graph Embedding for Link Prediction and Entity Typing
    Luo, Haoran
    E, Haihong
    Tan, Ling
    Zhou, Gengxian
    Yao, Tianyu
    Wan, Kaiyang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 5, 2023, : 6467 - 6474
  • [2] Knowledge Graph Embedding for Hyper-Relational Data
    Zhang, Chunhong
    Zhou, Miao
    Han, Xiao
    Hu, Zheng
    Ji, Yang
    TSINGHUA SCIENCE AND TECHNOLOGY, 2017, 22 (02) : 185 - 197
  • [3] Knowledge Graph Embedding for Hyper-Relational Data
    Chunhong Zhang
    Miao Zhou
    Xiao Han
    Zheng Hu
    Yang Ji
    Tsinghua Science and Technology, 2017, 22 (02) : 185 - 197
  • [4] Shrinking Embeddings for Hyper-Relational Knowledge Graphs
    Xiong, Bo
    Nayyeri, Mojtaba
    Pan, Shirui
    Staab, Steffen
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2023): LONG PAPERS, VOL 1, 2023, : 13306 - 13320
  • [5] Knowledge Graph Embedding for Hyper-Relational Data
    Chunhong Zhang
    Miao Zhou
    Xiao Han
    Zheng Hu
    Yang Ji
    Tsinghua Science and Technology, 2017, (02) : 185 - 197
  • [6] Learning Representations for Hyper-Relational Knowledge Graphs
    Shomer, Harry
    Jin, Wei
    Li, Juanhui
    Ma, Yao
    Liu, Hui
    PROCEEDINGS OF THE 2023 IEEE/ACM INTERNATIONAL CONFERENCE ON ADVANCES IN SOCIAL NETWORKS ANALYSIS AND MINING, ASONAM 2023, 2023, : 253 - 257
  • [7] Symbolic Knowledge Reasoning on Hyper-Relational Knowledge Graphs
    Wang, Zikang
    Li, Linjing
    Zeng, Daniel Dajun
    IEEE TRANSACTIONS ON BIG DATA, 2025, 11 (02) : 578 - 590
  • [8] Message Passing for Hyper-Relational Knowledge Graphs
    Galkin, Mikhail
    Trivedi, Priyansh
    Maheshwari, Gaurav
    Usbeck, Ricardo
    Lehmann, Jens
    PROCEEDINGS OF THE 2020 CONFERENCE ON EMPIRICAL METHODS IN NATURAL LANGUAGE PROCESSING (EMNLP), 2020, : 7346 - 7359
  • [9] HAHE: Hierarchical Attention for Hyper-Relational Knowledge Graphs in Global and Local Level
    Luo, Haoran
    E, Haihong
    Yang, Yuhao
    Guo, Yikai
    Sun, Mingzhi
    Yao, Tianyu
    Tang, Zichen
    Wan, Kaiyang
    Song, Meina
    Lin, Wei
    PROCEEDINGS OF THE 61ST ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS, ACL 2023, VOL 1, 2023, : 8095 - 8107
  • [10] HyperCL: A Contrastive Learning Framework for Hyper-Relational Knowledge Graph Embedding with Hierarchical Ontology
    Lu, Yuhuan
    Yu, Weijian
    Jing, Xin
    Yang, Dingqi
    FINDINGS OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: ACL 2024, 2024, : 2918 - 2929