Masked Deformation Modeling for Volumetric Brain MRI Self-Supervised Pre-Training

被引:0
|
作者
Lyu, Junyan [1 ,2 ]
Bartlett, Perry F. [2 ]
Nasrallah, Fatima A. [2 ]
Tang, Xiaoying [1 ,3 ]
机构
[1] Southern Univ Sci & Technol, Dept Elect & Elect Engn, Shenzhen 518055, Peoples R China
[2] Univ Queensland, Queensland Brain Inst, St Lucia, Qld 4072, Australia
[3] Southern Univ Sci & Technol, Jiaxing Res Inst, Jiaxing 314031, Peoples R China
基金
中国国家自然科学基金;
关键词
Brain; Magnetic resonance imaging; Deformation; Brain modeling; Image segmentation; Image restoration; Biomedical imaging; Annotations; Feature extraction; Lesions; Self-supervised learning; masked deformation modeling; brain segmentation; DIFFEOMORPHIC IMAGE REGISTRATION; SEGMENTATION; HIPPOCAMPUS; MORPHOMETRY; PATTERNS; RESOURCE; ATLAS;
D O I
10.1109/TMI.2024.3510922
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
Self-supervised learning (SSL) has been proposed to alleviate neural networks' reliance on annotated data and to improve downstream tasks' performance, which has obtained substantial success in several volumetric medical image segmentation tasks. However, most existing approaches are designed and pre-trained on CT or MRI datasets of non-brain organs. The lack of brain prior limits those methods' performance on brain segmentation, especially on fine-grained brain parcellation. To overcome this limitation, we here propose a novel SSL strategy for MRI of the human brain, named Masked Deformation Modeling (MDM). MDM first conducts atlas-guided patch sampling on individual brain MRI scans (moving volumes) and an MNI152 template (a fixed volume). The sampled moving volumes are randomly masked in a feature-aligned manner, and then sent into a U-Net-based network to extract latent features. An intensity head and a deformation field head are used to decode the latent features, respectively restoring the masked volume and predicting the deformation field from the moving volume to the fixed volume. The proposed MDM is fine-tuned and evaluated on three brain parcellation datasets with different granularities (JHU, Mindboggle-101, CANDI), a brain lesion segmentation dataset (ATLAS2), and a brain tumor segmentation dataset (BraTS21). Results demonstrate that MDM outperforms various state-of-the-art medical SSL methods by considerable margins, and can effectively reduce the annotation effort by at least 40%. Codes and pre-trained weights will be released at https://github.com/CRazorback/MDM.
引用
收藏
页码:1596 / 1607
页数:12
相关论文
共 50 条
  • [1] Masked Feature Prediction for Self-Supervised Visual Pre-Training
    Wei, Chen
    Fan, Haoqi
    Xie, Saining
    Wu, Chao-Yuan
    Yuille, Alan
    Feichtenhofer, Christoph
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 14648 - 14658
  • [2] Masked Text Modeling: A Self-Supervised Pre-training Method for Scene Text Detection
    Wang, Keran
    Xie, Hongtao
    Wang, Yuxin
    Zhang, Dongming
    Qu, Yadong
    Gao, Zuan
    Zhang, Yongdong
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 2006 - 2015
  • [3] Intra-modality masked image modeling: A self-supervised pre-training method for brain tumor segmentation
    Qi, Liangce
    Shi, Weili
    Miao, Yu
    Li, Yonghui
    Feng, Guanyuan
    Jiang, Zhengang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2024, 95
  • [4] Masked Autoencoder for Self-Supervised Pre-training on Lidar Point Clouds
    Hess, Georg
    Jaxing, Johan
    Svensson, Elias
    Hagerman, David
    Petersson, Christoffer
    Svensson, Lennart
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW), 2023, : 350 - 359
  • [5] Self-supervised ECG pre-training
    Liu, Han
    Zhao, Zhenbo
    She, Qiang
    BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2021, 70
  • [6] Correlational Image Modeling for Self-Supervised Visual Pre-Training
    Li, Wei
    Xie, Jiahao
    Loy, Chen Change
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 15105 - 15115
  • [7] Self-supervised Pre-training of Text Recognizers
    Kiss, Martin
    Hradis, Michal
    DOCUMENT ANALYSIS AND RECOGNITION-ICDAR 2024, PT IV, 2024, 14807 : 218 - 235
  • [8] Self-supervised Pre-training for Mirror Detection
    Lin, Jiaying
    Lau, Rynson W. H.
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 12193 - 12202
  • [9] Self-supervised Pre-training for Nuclei Segmentation
    Haq, Mohammad Minhazul
    Huang, Junzhou
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT II, 2022, 13432 : 303 - 313
  • [10] EFFECTIVENESS OF SELF-SUPERVISED PRE-TRAINING FOR ASR
    Baevski, Alexei
    Mohamed, Abdelrahman
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 7694 - 7698