Bubble Lattices II: Combinatorics

被引:0
|
作者
Mcconville, Thomas [1 ]
Muehle, Henri [2 ]
机构
[1] Kennesaw State Univ, Dept Math, Kennesaw, GA 30144 USA
[2] Qoniac GmbH, Dr Kulz Ring 15, D-01067 Dresden, Germany
关键词
Shuffle lattice; Bubble lattice; <italic>F</italic>-triangle; <italic>H</italic>-triangle; <italic>M</italic>-triangle; Noncrossing matching complex; Noncrossing bipartite complex; SHELLABLE NONPURE COMPLEXES;
D O I
10.1007/s00026-025-00743-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce two simplicial complexes, the noncrossing matching complex and the noncrossing bipartite complex. Both complexes are intimately related to the bubble lattice introduced in our earlier article "Bubble Lattices I: Structure" (arXiv:2202.02874). We study these complexes from both an enumerative and a topological point of view. In particular, we prove that these complexes are shellable and give explicit formulas for certain refined face numbers. Lastly, we conjecture an intriguing connection of these refined face numbers to the so-called M-triangle of the shuffle lattice.
引用
收藏
页数:34
相关论文
共 50 条
  • [1] Combinatorics of interactions on plane lattices
    Koshelev, V.N.
    Stasevich, S.I.
    Discrete Mathematics and Applications, 8 (04): : 391 - 402
  • [2] Combinatorics of (m, n)-Word Lattices
    Muehle, Henri
    ELECTRONIC JOURNAL OF COMBINATORICS, 2024, 31 (04):
  • [3] Analytic combinatorics of coordination numbers of cubic lattices
    Liang, Huyile
    Pei, Yanni
    Wang, Yi
    ADVANCES IN APPLIED MATHEMATICS, 2023, 147
  • [4] Random bubble lattices
    de Laix, AA
    Vachaspati, T
    PHYSICAL REVIEW D, 1999, 59 (04):
  • [5] Distributive lattices of small width, II: A problem from Stanley's 1986 text Enumerative Combinatorics
    Farley, Jonathan David
    Klippenstine, Ryan
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 2009, 116 (06) : 1097 - 1119
  • [6] On Combinatorics of Voronoi Polytopes for Perturbations of the Dual Root Lattices
    Garber, Alexey
    EXPERIMENTAL MATHEMATICS, 2024, 33 (01) : 86 - 99
  • [7] ON THE MAGNETIZATION CURVES OF BUBBLE LATTICES
    GEMPERLE, R
    MURTINOVA, L
    KACZER, J
    CZECHOSLOVAK JOURNAL OF PHYSICS, 1987, 37 (01) : 64 - +
  • [8] RADIAL MODE IN BUBBLE LATTICES
    HOFELT, MHH
    IEEE TRANSACTIONS ON MAGNETICS, 1973, MAG9 (04) : 621 - 624
  • [9] Bubble lattices I: Structure
    Mcconville, Thomas
    Muehle, Henri
    ALGEBRA UNIVERSALIS, 2024, 85 (01)
  • [10] Bubble lattices I: Structure
    Thomas McConville
    Henri Mühle
    Algebra universalis, 2024, 85