Material extrusion (ME) became widely accepted additive manufacturing method for producing customized polymer and fiber-reinforced polymer components, offering cost-effectiveness, speed, and minimal material waste. However, the parts printed are having lower mechanical characteristics and surface finish. Appropriate selection of post-treatment variables contributed to a marked improvement in the surface smoothness and mechanical attributes. In this research work, the influence of post-processing control factors namely type of chemical, exposure time, annealing temperature, and annealing time on mechanical properties and surface roughness was investigated. Experimentation with three levels design and multi-objective optimization was performed using Taguchi and grey relational analysis (GRA). The results shows that tensile strength, flexural strength, shore D hardness, and surface finish were improved by 21%, 11%, 5%, and 92% respectively. The key factors influencing mechanical strength are found to be annealing temperature and annealing time, at 95 degrees C and 150 min, while chemical type and exposure time are more significant for surface characteristics, with chloroform and 60 s exposure time being optimal parameters. The optimal parameters for multi-objective optimization have been determined as follows: ethyl acetate, exposure time of 40 s, annealing temperature of 95 degrees C and annealing time of 120 min. Optimized post-processing conditions enhance the mechanical properties and surface quality of end-use products made through fused filament fabrication, thus boosting the potential of the 3D printing industry.