Intelligent Network Security Detection Model: Application of Multi-Scale Attention Network and Distributed Perception Mechanism

被引:0
|
作者
Chen, Wei [1 ]
Tian, Yuan [2 ]
Li, Da [3 ]
机构
[1] Zhejiang Sci Tech Univ, Sch Int Educ, Hangzhou 310018, Zhejiang, Peoples R China
[2] Shanghai Lixin Univ Accounting & Finance, Sch Finance, Shanghai 201209, Peoples R China
[3] CNKI, Cent Inst R&D, Beijing 100083, Peoples R China
来源
关键词
Distributed multi-target sensing; multi-scale; attention networks; field-of-view complementarity; network security detection;
D O I
10.1142/S201032472550002X
中图分类号
O59 [应用物理学];
学科分类号
摘要
To address the complex and variable attack patterns prevalent in the current cybersecurity landscape, as well as the limitations of traditional detection methods concerning sensing range, accuracy and efficiency, an innovative intelligent detection model for cybersecurity was proposed. First, we design a distributed multi-target finite sensing mechanism with complementary fields of view, significantly extending the sensing range by optimizing sensor layout and collaboration strategies. Second, this study constructs a multi-scale attention network model (MSANet), which enhances the feature extraction and expression capabilities of the model without imposing additional computational burdens, thereby enabling more accurate recognition of cyber-attack patterns across different scales. Finally, leveraging the extensive data provided by the distributed perception system and the robust learning capabilities of MSANet, we develop a label-free intelligent detection model for network security. This model effectively addresses the detection challenges arising from feature distribution discrepancies between the target and source network domains, achieving efficient and accurate detection in environments with no labeled or limited labeled data. This advancement provides substantial technical support for network security protection. Experimental results demonstrate that our approach achieves accuracy rates of 98.2%, 96.7% and 99.5%, as well as F1-scores of 97.9%, 95.8% and 97.9%, respectively, in detecting botnet traffic, background traffic and normal traffic within the CTU network traffic dataset. In summary, this study not only enriches the theoretical framework of network security detection but also offers practical solutions for constructing an efficient and intelligent network security protection system, possessing significant theoretical value and promising application prospects.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] A Multi-Scale Rebar Detection Network with an Embedded Attention Mechanism
    Zheng, Yanmei
    Zhou, Guanghui
    Lu, Bibo
    APPLIED SCIENCES-BASEL, 2023, 13 (14):
  • [2] Multi-scale salient object detection network combining an attention mechanism
    Liu, Di
    Guo, Jichang
    Wang, Yudong
    Zhang, Yi
    Xi'an Dianzi Keji Daxue Xuebao/Journal of Xidian University, 2022, 49 (04): : 118 - 126
  • [3] A multi-scale network model of brightness perception
    Mingolla, E
    BIOCYBERNETICS OF VISION: INTEGRATIVE MECHANISMS AND COGNITIVE PROCESSES, 1997, 2 : 166 - 175
  • [4] Multi-scale Dilated Convolutional Neural Network Model Based on Attention Mechanism
    Wang J.
    Lai X.
    Lei J.
    Zhang J.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2021, 34 (06): : 497 - 508
  • [5] MFANet: Multi-scale feature fusion network with attention mechanism
    Wang, Gaihua
    Gan, Xin
    Cao, Qingcheng
    Zhai, Qianyu
    VISUAL COMPUTER, 2023, 39 (07): : 2969 - 2980
  • [6] Parallel multi-scale network with attention mechanism for pancreas segmentation
    Long, Jianwu
    Song, Xinlei
    An, Yong
    Li, Tong
    Zhu, Jiangzhou
    IEEJ TRANSACTIONS ON ELECTRICAL AND ELECTRONIC ENGINEERING, 2022, 17 (01) : 110 - 119
  • [7] MFANet: Multi-scale feature fusion network with attention mechanism
    Gaihua Wang
    Xin Gan
    Qingcheng Cao
    Qianyu Zhai
    The Visual Computer, 2023, 39 : 2969 - 2980
  • [8] Multi-scale network with attention mechanism for underwater image enhancement
    Tao, Ye
    Tang, Jinhui
    Zhao, Xinwei
    Zhou, Chen
    Wang, Chong
    Zhao, Zhonglei
    NEUROCOMPUTING, 2024, 595
  • [9] Multi-scale attention and dilation network for small defect detection *
    Xiang, Xinyuan
    Liu, Meiqin
    Zhang, Senlin
    Wei, Ping
    Chen, Badong
    PATTERN RECOGNITION LETTERS, 2023, 172 : 82 - 88
  • [10] Multi-Scale Integrated Attention Mechanism for Facial Expression Recognition Network
    Luo, Sishi
    Li, Maojun
    Chen, Man
    Computer Engineering and Applications, 2023, 59 (01): : 199 - 206