Absence of anomalous dissipation for weak solutions of the Maxwell-Stefan system

被引:0
|
作者
Berselli, Luigi C. [1 ]
Georgiadis, Stefanos [2 ,3 ]
Tzavaras, Athanasios E. [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Via F Buonarroti 1 C, I-I56127 Pisa, Italy
[2] King Abdullah Univ Sci & Technol KAUST, Comp Elect & Math Sci & Engn Div, Thuwal 239556900, Saudi Arabia
[3] Vienna Univ Technol, Inst Anal & Sci Comp, Wiedner Hauptstr 8-10, A-1040 Vienna, Austria
基金
奥地利科学基金会; 欧洲研究理事会;
关键词
gas mixture; Maxwell-Stefan equations; isothermal model; nonequilibrium thermodynamics; anomalous dissipation; ENERGY-CONSERVATION; EULER;
D O I
10.1088/1361-6544/ada7b8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we give a short and self-contained proof of the fact that weak solutions to the Maxwell-Stefan system automatically satisfy an entropy equality, establishing the absence of anomalous dissipation.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] ON THE RELATIONSHIP BETWEEN THE EXACT AND LINEARIZED SOLUTIONS OF THE MAXWELL-STEFAN EQUATIONS FOR THE MULTICOMPONENT FILM MODEL
    TAYLOR, R
    WEBB, DR
    CHEMICAL ENGINEERING COMMUNICATIONS, 1980, 7 (4-5) : 287 - 299
  • [22] AN ENERGY STABLE AND POSITIVITY-PRESERVING SCHEME FOR THE MAXWELL-STEFAN DIFFUSION SYSTEM
    Huo, Xiaokai
    Liu, Hailiang
    Tzavaras, Athanasios E.
    Wang, Shuaikun
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2021, 59 (05) : 2321 - 2345
  • [23] Modeling of reactive absorption using the Maxwell-Stefan equations
    Russian Academy of Sciences, Institute of New Chemical Problems, Chernogolovka, Russia
    不详
    不详
    不详
    Ind Eng Chem Res, 10 (4325-4334):
  • [24] Modeling of reactive absorption using the Maxwell-Stefan equations
    Kenig, EY
    Wiesner, U
    Gorak, A
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1997, 36 (10) : 4325 - 4334
  • [25] On the Maxwell-Stefan diffusion limit for a mixture ofmonatomic gases
    Hutridurga, Harsha
    Salvarani, Francesco
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (03) : 803 - 813
  • [26] A particulate pulse-release system and mathematical description with the Maxwell-Stefan theory
    Kok, PJAH
    Vonk, P
    Kossen, NWF
    JOURNAL OF CONTROLLED RELEASE, 2000, 66 (2-3) : 293 - 306
  • [27] Dynamic modelling of reactive absorption with the Maxwell-Stefan approach
    Schneider, R
    Kenig, EY
    Górak, A
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 1999, 77 (A7): : 633 - 638
  • [28] Verification of the Maxwell-Stefan theory for tracer diffusion in zeolites
    Krishna, R
    Paschek, D
    CHEMICAL ENGINEERING JOURNAL, 2002, 85 (01) : 7 - 15
  • [29] A MATHEMATICAL AND NUMERICAL ANALYSIS OF THE MAXWELL-STEFAN DIFFUSION EQUATIONS
    Boudin, Laurent
    Grec, Berenice
    Salvarani, Francesco
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2012, 17 (05): : 1427 - 1440
  • [30] NEGATIVE MAXWELL-STEFAN DIFFUSION-COEFFICIENTS - COMMENTS
    KRAAIJEVELD, G
    WESSELINGH, JA
    KUIKEN, GDC
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 1994, 33 (03) : 750 - 751