piRNA in Machine-Learning-Based Diagnostics of Colorectal Cancer

被引:0
|
作者
Li, Sienna [1 ]
Kouznetsova, Valentina L. [1 ,2 ]
Kesari, Santosh [3 ]
Tsigelny, Igor F. [1 ,2 ,4 ]
机构
[1] CureSci Inst, San Diego, CA 92121 USA
[2] Univ Calif San Diego, San Diego Supercomp Ctr, La Jolla, CA 92093 USA
[3] Pacific Neurosci Inst, Santa Monica, CA 90404 USA
[4] Univ Calif San Diego, Dept Neurosci, La Jolla, CA 92093 USA
来源
MOLECULES | 2024年 / 29卷 / 18期
关键词
piRNA; machine learning; colorectal cancer; diagnostics;
D O I
10.3390/molecules29184311
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Objective biomarkers are crucial for early diagnosis to promote treatment and raise survival rates for diseases. With the smallest non-coding RNAs-piwi-RNAs (piRNAs)-and their transcripts, we sought to identify if these piRNAs could be used as biomarkers for colorectal cancer (CRC). Using previously published data from serum samples of patients with CRC, 13 differently expressed piRNAs were selected as potential biomarkers. With this data, we developed a machine learning (ML) algorithm and created 1020 different piRNA sequence descriptors. With the Na & iuml;ve Bayes Multinomial classifier, we were able to isolate the 27 most influential sequence descriptors and achieve an accuracy of 96.4%. To test the validity of our model, we used data from piRBase with known associations with CRC that we did not use to train the ML model. We were able to achieve an accuracy of 85.7% with these new independent data. To further validate our model, we also tested data from unrelated diseases, including piRNAs with a correlation to breast cancer and no proven correlation to CRC. The model scored 44.4% on these piRNAs, showing that it can identify a difference between biomarkers of CRC and biomarkers of other diseases. The final results show that our model is an effective tool for diagnosing colorectal cancer. We believe that in the future, this model will prove useful for colorectal cancer and other diseases diagnostics.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] miRNA in Machine-Learning-Based Diagnostics of Oral Cancer
    Li, Xinghang
    Kouznetsova, Valentina L.
    Tsigelny, Igor F.
    BIOMEDICINES, 2024, 12 (10)
  • [2] Machine-learning-based diagnostics of EEG pathology
    Gemein, Lukas A. W.
    Schirrmeister, Robin T.
    Chrabaszcz, Patryk
    Wilson, Daniel
    Boedecker, Joschka
    Schulze-Bonhage, Andreas
    Hutter, Frank
    Ball, Tonio
    NEUROIMAGE, 2020, 220
  • [3] Machine-learning diagnostics of breast cancer using piRNA biomarkers
    Zhao, Amy R.
    Kouznetsova, Valentina L.
    Kesari, Santosh
    Tsigelny, Igor F.
    BIOMARKERS, 2025,
  • [4] Machine-Learning-Based Rotating Detonation Engine Diagnostics: Evaluation for Application in Experimental Facilities
    Johnson, Kristyn B.
    Ferguson, Don
    Nix, Andrew
    JOURNAL OF PROPULSION AND POWER, 2023, 40 (02) : 257 - 270
  • [5] Machine-learning-based image categorization
    Han, YT
    Qi, XJ
    IMAGE ANALYSIS AND RECOGNITION, 2005, 3656 : 585 - 592
  • [6] Machine-Learning-Based Accessibility System
    Banerjee K.
    Singh A.
    Akhtar N.
    Vats I.
    SN Computer Science, 5 (3)
  • [7] Machine-learning-based Analysis Identifies miRNA Expression Profile for Diagnosis and Prediction of Colorectal Cancer: A Preliminary Study
    Pawelka, Dorota
    Laczmanska, Izabela
    Karpinski, Pawel
    Supplitt, Stanislaw
    Witkiewicz, Wojciech
    Knychalski, Barlomiej
    Pelak, Joanna
    Zebrowska, Paulina
    Laczmanski, Lukasz
    CANCER GENOMICS & PROTEOMICS, 2022, 19 (04) : 503 - 511
  • [8] Machine-Learning-Based Predictive Handover
    Masri, Ahmed
    Veijalainen, Teemu
    Martikainen, Henrik
    Mwanje, Stephen
    Ali-Tolppa, Janne
    Kajo, Marton
    2021 IFIP/IEEE INTERNATIONAL SYMPOSIUM ON INTEGRATED NETWORK MANAGEMENT (IM 2021), 2021, : 648 - 652
  • [9] A Machine-Learning-Based Bibliometric Analysis of the Scientific Literature on Anal Cancer
    Franco, Pierfrancesco
    Segelov, Eva
    Johnsson, Anders
    Riechelmann, Rachel
    Guren, Marianne G.
    Das, Prajnan
    Rao, Sheela
    Arnold, Dirk
    Spindler, Karen-Lise Garm
    Deutsch, Eric
    Krengli, Marco
    Tombolini, Vincenzo
    Sebag-Montefiore, David
    De Felice, Francesca
    CANCERS, 2022, 14 (07)
  • [10] Machine learning in cancer diagnostics
    不详
    EBIOMEDICINE, 2019, 45 : 1 - 2