Deep learning-enabled exploration of global spectral features for photosynthetic capacity estimation

被引:0
|
作者
Deng, Xianzhi [1 ]
Hu, Xiaolong [1 ]
Shi, Liangsheng [1 ]
Su, Chenye [1 ]
Li, Jinmin [1 ]
Du, Shuai [1 ]
Li, Shenji [2 ]
机构
[1] Wuhan Univ, State Key Lab Water Resources Engn & Management, Wuhan, Hubei, Peoples R China
[2] Urban Operat Management Ctr Hengsha Township, Shanghai, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
hyperspectral data; spectral sensitive band; vegetation index; photosynthetic capacity; deep learning; power compression; LEAF OPTICAL-PROPERTIES; REFLECTANCE INDEX PRI; CHLOROPHYLL CONTENT; VEGETATION INDEXES; LEAVES; CANOPY; MODEL; LIGHT; LIMITATIONS; REGRESSION;
D O I
10.3389/fpls.2024.1499875
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Spectral analysis is a widely used method for monitoring photosynthetic capacity. However, vegetation indices-based linear regression exhibits insufficient utilization of spectral information, while full spectra-based traditional machine learning has limited representational capacity (partial least squares regression) or uninterpretable (convolution). In this study, we proposed a deep learning model with enhanced interpretability based on attention and vegetation indices calculation for global spectral feature mining to accurately estimate photosynthetic capacity. We explored the ability of the model to uncover the optimal vegetation indices form and illustrated its advantage over traditional methods. Furthermore, we verified that power compression was an effective method for spectral processing. Our results demonstrated that the new model outperformed traditional models, with an increase in the coefficient of determination (R2) of 0.01-0.43 and a decrease in root mean square error (RMSE) of 1.58-12.48 mu mol m-2 s-1. The best performance of our model in R2 was 0.86 and 0.81 for maximum carboxylation rate (Vcmax ) and maximum electron transport rate (Jmax ), respectively. The photosynthesis-sensitive spectral bands identified by our model were predominantly in the visible range. The most sensitive vegetation indices form discovered by our model was R e f l e c t a n c e n e a r - i n f r a r e d + R e f l e c t a n c e g r e e n / b l u e R e f l e c t a n c e n e a r - i n f r a r e d x R e f l e c t a n c e r e d . Our model provides a new framework for interpreting spectral information and accurately estimating photosynthetic capacity.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] Global Placement with Deep Learning-Enabled Explicit Routability Optimization
    Liu, Siting
    Sun, Qi
    Liao, Peiyu
    Lin, Yibo
    Yu, Bei
    PROCEEDINGS OF THE 2021 DESIGN, AUTOMATION & TEST IN EUROPE CONFERENCE & EXHIBITION (DATE 2021), 2021, : 1821 - 1824
  • [2] Deep Learning-Enabled One-Bit DoA Estimation
    Yeganegi, Farhang
    Eamaz, Arian
    Esmaeilbeig, Tara
    Soltanalian, Mojtaba
    2024 IEEE 13RD SENSOR ARRAY AND MULTICHANNEL SIGNAL PROCESSING WORKSHOP, SAM 2024, 2024,
  • [3] Deep Learning-Enabled Improved Direction-of-Arrival Estimation Technique
    Jenkinson, George
    Abbasi, Muhammad Ali Babar
    Molaei, Amir Masoud
    Yurduseven, Okan
    Fusco, Vincent
    ELECTRONICS, 2023, 12 (16)
  • [4] Deep learning-enabled MCMC for probabilistic state estimation in district heating grids
    Bott, Andreas
    Janke, Tim
    Steinke, Florian
    APPLIED ENERGY, 2023, 336
  • [5] Deep learning-enabled medical computer vision
    Esteva, Andre
    Chou, Katherine
    Yeung, Serena
    Naik, Nikhil
    Madani, Ali
    Mottaghi, Ali
    Liu, Yun
    Topol, Eric
    Dean, Jeff
    Socher, Richard
    NPJ DIGITAL MEDICINE, 2021, 4 (01)
  • [6] Deep learning-enabled medical computer vision
    Andre Esteva
    Katherine Chou
    Serena Yeung
    Nikhil Naik
    Ali Madani
    Ali Mottaghi
    Yun Liu
    Eric Topol
    Jeff Dean
    Richard Socher
    npj Digital Medicine, 4
  • [7] Deep Learning-Enabled Technologies for Bioimage Analysis
    Rabbi, Fazle
    Dabbagh, Sajjad Rahmani
    Angin, Pelin
    Yetisen, Ali Kemal
    Tasoglu, Savas
    MICROMACHINES, 2022, 13 (02)
  • [8] Efficient Deep Reinforcement Learning-Enabled Recommendation
    Pang, Guangyao
    Wang, Xiaoming
    Wang, Liang
    Hao, Fei
    Lin, Yaguang
    Wan, Pengfei
    Min, Geyong
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2023, 10 (02): : 871 - 886
  • [9] Deep Learning-Enabled Diagnosis of Liver Adenocarcinoma
    Albrecht, Thomas
    Rossberg, Annik
    Albrecht, Jana Dorothea
    Nicolay, Jan Peter
    Straub, Beate Katharina
    Gerber, Tiemo Sven
    Albrecht, Michael
    Brinkmann, Fritz
    Charbel, Alphonse
    Schwab, Constantin
    Schreck, Johannes
    Brobeil, Alexander
    Flechtenmacher, Christa
    von Winterfeld, Moritz
    Koehler, Bruno Christian
    Springfeld, Christoph
    Mehrabi, Arianeb
    Singer, Stephan
    Vogel, Monika Nadja
    Neumann, Olaf
    Stenzinger, Albrecht
    Schirmacher, Peter
    Weis, Cleo-Aron
    Roessler, Stephanie
    Kather, Jakob Nikolas
    Goeppert, Benjamin
    GASTROENTEROLOGY, 2023, 165 (05) : 1262 - 1275
  • [10] Deep learning-enabled anomaly detection for IoT systems
    Abusitta, Adel
    de Carvalho, Glaucio H. S.
    Wahab, Omar Abdel
    Halabi, Talal
    Fung, Benjamin C. M.
    Al Mamoori, Saja
    INTERNET OF THINGS, 2023, 21