Dissecting stellar populations with manifold learning: I. Validation of the method on a synthetic Milky Way-like galaxy

被引:0
|
作者
Neitzel, A. W. [1 ,2 ]
Campante, T. L. [1 ,2 ]
Bossini, D. [3 ,4 ]
Miglio, A. [5 ,6 ]
机构
[1] Univ Porto, Inst Astrofis & Ciencias Espaco, CAUP, Rua Estrelas Porto, P-4150762 Porto, Portugal
[2] Univ Porto, Fac Ciencias, Dept Fis & Astron, Rua Campo Alegre S-N, P-4169007 Porto, Portugal
[3] Univ Padua, Dipartimento Fis & Astron Galileo Galilei, Vicolo Osservatorio 3, I-35122 Padua, Italy
[4] INAF Osservatorio Astron Padova, Vicolo Osservatorio 5, I-35122 Padua, Italy
[5] Univ Bologna, Dept Phys & Astron, Via P Gobetti 93-2, I-40129 Bologna, Italy
[6] INAF Osservatorio Astrofis & Sci Spazio, Via P Gobetti 93-3, I-40129 Bologna, Italy
基金
欧洲研究理事会;
关键词
asteroseismology; methods: data analysis; stars: oscillations; Galaxy: evolution; Galaxy: stellar content; Galaxy: structure; FIRE COSMOLOGICAL SIMULATIONS; GALACTIC ARCHAEOLOGY; CHEMICAL EVOLUTION; RED GIANTS; ASTEROSEISMOLOGY; STARS; MISSION; DWARF; CHRONOLOGY; SATELLITE;
D O I
10.1051/0004-6361/202451718
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Context. Different stellar populations may be identified through differences in chemical, kinematic, and chronological properties, suggesting the interplay of various physical mechanisms that led to their origin and subsequent evolution. As such, the identification of stellar populations is key for gaining an insight into the evolutionary history of the Milky Way. This task is complicated by the fact that stellar populations share a significant overlap in their chrono-chemo-kinematic properties, hindering efforts to identify and define stellar populations. Aims. Our goal is to offer a novel and effective methodology that can provide a deeper insight into the nonlinear and nonparametric properties of the multidimensional physical parameters that define stellar populations. Methods. For this purpose, we explore the ability of manifold learning to differentiate stellar populations with minimal assumptions about their number and nature. Manifold learning is an unsupervised machine learning technique that seeks to intelligently identify and disentangle manifolds hidden within the input data. To test this method, we make use of Gaia DR3-like synthetic stellar samples generated from the FIRE-2 cosmological simulations. These represent red-giant stars constrained by asteroseismic data from TESS. Results. We reduced the 5D input chrono-chemo-kinematic parameter space into 2D latent space embeddings generated by manifold learning. We then study these embeddings to assess how accurately they represent the original data and whether they contain meaningful information that can be used to discern stellar populations. Conclusions. We conclude that manifold learning possesses promising abilities to differentiate stellar populations when considering realistic observational constraints.
引用
收藏
页数:15
相关论文
共 13 条
  • [1] Stellar Populations in a semi-analytic model I: Bulges of Milky Way-like galaxies
    Gargiulo, I. D.
    Cora, S. A.
    Vega-Martinez, C. A.
    Gonzalez, O. A.
    Zoccali, M.
    Gonzalez, R.
    Ruiz, A. N.
    Padilla, N. D.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2017, 472 (04) : 4133 - 4143
  • [2] The effect of stellar feedback on a Milky Way-like galaxy and its gaseous halo
    Marasco, Antonino
    Debattista, Victor P.
    Fraternali, Filippo
    van der Hulst, Thijs
    Wadsley, James
    Quinn, Thomas
    Roskar, Rok
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2015, 451 (04) : 4223 - 4237
  • [3] How Do Supernovae Impact the Circumgalactic Medium? I. Large-scale Fountains around a Milky Way-like Galaxy
    Li, Miao
    Tonnesen, Stephanie
    ASTROPHYSICAL JOURNAL, 2020, 898 (02):
  • [4] The impact of two massive early accretion events in a Milky Way-like galaxy: repercussions for the buildup of the stellar disc and halo
    Orkney, Matthew D. A.
    Laporte, Chervin F. P.
    Grand, Robert J. J.
    Gomez, Facundo A.
    van de Voort, Freeke
    Marinacci, Federico
    Fragkoudi, Francesca
    Pakmor, Ruediger
    Springel, Volker
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 517 (01) : L138 - L142
  • [5] Exploring the diversity and similarity of radially anisotropic Milky Way-like stellar haloes: implications for disrupted dwarf galaxy searches
    Orkney, Matthew D. A.
    Laporte, Chervin F. P.
    Grand, Robert J. J.
    Gomez, Facundo A.
    van de Voort, Freeke
    Fattahi, Azadeh
    Marinacci, Federico
    Pakmor, Ruediger
    Fragkoudi, Francesca
    Springel, Volker
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2023, 525 (01) : 683 - 705
  • [6] Mapping the stellar age of the Milky Way bulge with the VVV I. The method
    Surot, F.
    Valenti, E.
    Hidalgo, S. L.
    Zoccali, M.
    Sokmen, E.
    Rejkuba, M.
    Minniti, D.
    Gonzalez, O. A.
    Cassisi, S.
    Renzini, O.
    Weiss, A.
    ASTRONOMY & ASTROPHYSICS, 2019, 623
  • [7] Stars Behind Bars. I. The Milky Way's Central Stellar Populations
    Buck, Tobias
    Ness, Melissa K.
    Maccio, Andrea V.
    Obreja, Aura
    Dutton, Aaron A.
    ASTROPHYSICAL JOURNAL, 2018, 861 (02):
  • [8] The SAGA Survey. I. Satellite Galaxy Populations around Eight Milky Way Analogs
    Geha, Marla
    Wechsler, Risa H.
    Mao, Yao-Yuan
    Tollerud, Erik J.
    Weiner, Benjamin
    Bernstein, Rebecca
    Hoyle, Ben
    Marchi, Sebastian
    Marshall, Phil J.
    Munmoz, Ricardo
    Lu, Yu
    ASTROPHYSICAL JOURNAL, 2017, 847 (01):
  • [9] Numerical hydrodynamic simulations based on semi-analytic galaxy merger trees: method and Milky Way-like galaxies
    Moster, Benjamin P.
    Maccio, Andrea V.
    Somerville, Rachel S.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2014, 437 (02) : 1027 - 1044
  • [10] Cosmological gas accretion history onto the stellar discs of Milky Way-like galaxies in the Auriga simulations - (I) Temporal dependency
    Iza, Federico G.
    Scannapieco, Cecilia
    Nuza, Sebastian E.
    Grand, Robert J. J.
    Gomez, Facundo A.
    Springel, Volker
    Pakmor, Rudiger
    Marinacci, Federico
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2022, 517 (01) : 832 - 852