Heart Disease Prediction Using Ensemble Tree Algorithms: A Supervised Learning Perspective

被引:0
|
作者
Sakyi-Yeboah, Enoch [1 ]
Agyemang, Edmund Fosu [1 ,2 ,3 ]
Agbenyeavu, Vincent [2 ]
Osei-Nkwantabisa, Akua [2 ]
Kissi-Appiah, Priscilla [2 ]
Moshood, Lateef [2 ]
Agbota, Lawrence [2 ]
Nortey, Ezekiel N. N. [1 ]
机构
[1] Univ Ghana, Dept Stat & Actuarial Sci, Accra, Ghana
[2] Univ Texas Rio Grande Valley, Sch Math & Stat Sci, Edinburg, TX 78539 USA
[3] Ashesi Univ Coll, Dept Comp Sci, Berekuso, Ghana
关键词
adaptive boosting; extreme gradient boosting; extremely randomized trees; heart disease; random forest; FEATURE-SELECTION; SYSTEM; MODEL;
D O I
10.1155/acis/1989813
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Heart disease stands as a leading cause of morbidity and mortality globally, presenting a significant public health challenge. Therefore, early prediction and detection are critical, leading to timely and appropriate interventions at early stages. Four ensemble tree-based algorithms were used in this study: adaptive boosting, extreme gradient boosting, random forest, and extremely randomized trees, investigating their ability to predict heart disease. Data related to heart disease clinical features was obtained from the open Kaggle Machine Learning Dataset repository. Adaptive Boosting stands out as the highest performer, achieving an average testing accuracy of 93.70%, precision of 93.71%, recall of 93.70%, and F1 score of 93.69%, along with the highest AUC score of 0.9708, across all competing models considered in the study. These metrics indicate a superior ability to distinguish between patients with and without heart disease, effectively making it particularly valuable for clinical applications where early detection can save lives. The SHapley Additive exPlanations (SHAP) framework adopted to investigate the relative importance of the features in predicting heart disease revealed the most influential predictors (ST slope, chest pain type, old peak, and cholesterol), further aiding the understanding of heart disease mechanisms. Future work should explore the integration of ensemble learning algorithms with real-time patient monitoring systems. This integration could allow for continuous health status updates, equipping predictive models with the information necessary to facilitate dynamic, real-time interventions that are more closely aligned with patient needs.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Prediction of Coronary Heart Disease using Supervised Machine Learning Algorithms
    Krishnani, Divya
    Kumari, Anjali
    Dewangan, Akash
    Singh, Aditya
    Naik, Nenavath Srinivas
    PROCEEDINGS OF THE 2019 IEEE REGION 10 CONFERENCE (TENCON 2019): TECHNOLOGY, KNOWLEDGE, AND SOCIETY, 2019, : 367 - 372
  • [2] Heart disease prediction using supervised machine learning algorithms: Performance analysis and comparison
    Ali, Md Mamun
    Paul, Bikash Kumar
    Ahmed, Kawsar
    Bui, Francis M.
    Quinn, Julian M. W.
    Moni, Mohammad Ali
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 136
  • [3] Prediction of Heart Disease using an Ensemble Learning Approach
    Alshehri G.A.
    Alharbi H.M.
    International Journal of Advanced Computer Science and Applications, 2023, 14 (08) : 1089 - 1097
  • [4] Prediction of Cardiac Disease using Supervised Machine Learning Algorithms
    Princy, R. Jane Preetha
    Parthasarathy, Saravanan
    Jose, P. Subha Hency
    Lakshminarayanan, Arun Raj
    Jeganathan, Selvaprabu
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTING AND CONTROL SYSTEMS (ICICCS 2020), 2020, : 570 - 575
  • [5] Prediction of CardioVascular Disease (CVD) using Ensemble Learning Algorithms
    Oswald, C.
    Sathwika, Gadi Jaya
    Bhattacharya, Arnab
    PROCEEDINGS OF THE 5TH JOINT INTERNATIONAL CONFERENCE ON DATA SCIENCE & MANAGEMENT OF DATA, CODS COMAD 2022, 2022, : 292 - 293
  • [6] Prediction of Heart Disease Using Machine Learning Algorithms
    Krishnan, Santhana J.
    Geetha, S.
    PROCEEDINGS OF 2019 1ST INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION AND COMMUNICATION TECHNOLOGY (ICIICT 2019), 2019,
  • [7] Heart Disease Prediction Using Machine Learning Algorithms
    Malavika, G.
    Rajathi, N.
    Vanitha, V.
    Parameswari, P.
    BIOSCIENCE BIOTECHNOLOGY RESEARCH COMMUNICATIONS, 2020, 13 (11): : 24 - 27
  • [8] Heart Disease Prediction Using Machine Learning Algorithms
    Mammen, Rea
    Pawar, Arti
    SMART SENSORS MEASUREMENT AND INSTRUMENTATION, CISCON 2021, 2023, 957 : 239 - 253
  • [9] Heart Disease Prediction Using Machine Learning Algorithms
    Jrab, Dina
    Eleyan, Derar
    Eleyan, Amna
    Bejaoui, Tarek
    2024 INTERNATIONAL CONFERENCE ON SMART APPLICATIONS, COMMUNICATIONS AND NETWORKING, SMARTNETS-2024, 2024,
  • [10] Heart Disease Prediction by Using Machine Learning Algorithms
    Erdogan, Alperen
    Guney, Selda
    2020 28TH SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE (SIU), 2020,