A Tutorial on the Use of Physics-Informed Neural Networks to Compute the Spectrum of Quantum Systems

被引:1
|
作者
Brevi, Lorenzo [1 ]
Mandarino, Antonio [1 ]
Prati, Enrico [1 ]
机构
[1] Univ Milan, Dept Phys Aldo Pontremoli, Via Celoria 16, I-20133 Milan, Italy
关键词
deep learning; physics-informed neural networks; partial differential equations; Schr & ouml; dinger equation; APPROXIMATION;
D O I
10.3390/technologies12100174
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Quantum many-body systems are of great interest for many research areas, including physics, biology, and chemistry. However, their simulation is extremely challenging, due to the exponential growth of the Hilbert space with system size, making it exceedingly difficult to parameterize the wave functions of large systems by using exact methods. Neural networks and machine learning, in general, are a way to face this challenge. For instance, methods like tensor networks and neural quantum states are being investigated as promising tools to obtain the wave function of a quantum mechanical system. In this tutorial, we focus on a particularly promising class of deep learning algorithms. We explain how to construct a Physics-Informed Neural Network (PINN) able to solve the Schr & ouml;dinger equation for a given potential, by finding its eigenvalues and eigenfunctions. This technique is unsupervised, and utilizes a novel computational method in a manner that is barely explored. PINNs are a deep learning method that exploit automatic differentiation to solve integro-differential equations in a mesh-free way. We show how to find both the ground and the excited states. The method discovers the states progressively by starting from the ground state. We explain how to introduce inductive biases in the loss to exploit further knowledge of the physical system. Such additional constraints allow for a faster and more accurate convergence. This technique can then be enhanced by a smart choice of collocation points in order to take advantage of the mesh-free nature of the PINN. The methods are made explicit by applying them to the infinite potential well and the particle in a ring, a challenging problem to be learned by an artificial intelligence agent due to the presence of complex-valued eigenfunctions and degenerate states
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Quantum Physics-Informed Neural Networks
    Trahan, Corey
    Loveland, Mark
    Dent, Samuel
    ENTROPY, 2024, 26 (08)
  • [2] Using physics-informed neural networks to compute quasinormal modes
    Cornell, Alan S.
    Ncube, Anele
    Harmsen, Gerhard
    PHYSICAL REVIEW D, 2022, 106 (12)
  • [3] Physics-Informed Neural Networks for Quantum Control
    Norambuena, Ariel
    Mattheakis, Marios
    Gonzalez, Francisco J.
    Coto, Raul
    PHYSICAL REVIEW LETTERS, 2024, 132 (01)
  • [4] On physics-informed neural networks for quantum computers
    Markidis, Stefano
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
  • [5] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [6] General implementation of quantum physics-informed neural networks
    Vadyala, Shashank Reddy
    Betgeri, Sai Nethra
    ARRAY, 2023, 18
  • [7] Physics-Informed Neural Networks for Quantum Eigenvalue Problems
    Jin, Henry
    Mattheakis, Marios
    Protopapas, Pavlos
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [8] Design of Turing Systems with Physics-Informed Neural Networks
    Kho, Jordon
    Koh, Winston
    Wong, Jian Cheng
    Chiu, Pao-Hsiung
    Ooi, Chin Chun
    2022 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2022, : 1180 - 1186
  • [9] Physics-informed neural networks for an optimal counterdiabatic quantum computation
    Ferrer-Sanchez, Antonio
    Flores-Garrigos, Carlos
    Hernani-Morales, Carlos
    Orquin-Marques, Jose J.
    Hegade, Narendra N.
    Cadavid, Alejandro Gomez
    Montalban, Iraitz
    Solano, Enrique
    Vives-Gilabert, Yolanda
    Martin-Guerrero, Jose D.
    MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02):
  • [10] Enforcing Dirichlet boundary conditions in physics-informed neural networks and variational physics-informed neural networks
    Berrone, S.
    Canuto, C.
    Pintore, M.
    Sukumar, N.
    HELIYON, 2023, 9 (08)