TopoTxR: A topology-guided deep convolutional network for breast parenchyma learning on DCE-MRIs

被引:1
|
作者
Wang, Fan [1 ]
Zou, Zhilin [1 ]
Sakla, Nicole [2 ]
Partyka, Luke [2 ]
Rawal, Nil [2 ]
Singh, Gagandeep [3 ]
Zhao, Wei [5 ]
Ling, Haibin [1 ]
Huang, Chuan [4 ,7 ,8 ]
Prasanna, Prateek [6 ]
Chen, Chao [6 ]
机构
[1] SUNY Stony Brook, Dept Comp Sci, Stony Brook, NY USA
[2] Newark Beth Israel Med Ctr, Dept Radiol, Newark, NJ USA
[3] Columbia Univ, Irving Med Ctr, Dept Radiol, New York, NY USA
[4] Emory Univ, Sch Med, Dept Radiol & Imaging Sci, Atlanta, GA USA
[5] SUNY Stony Brook, Dept Radiol, Stony Brook, NY USA
[6] SUNY Stony Brook, Dept Biomed Informat, Stony Brook, NY 11794 USA
[7] Georgia Inst Technol, Dept Biomed Engn, Atlanta, GA USA
[8] Emory Univ, Atlanta, GA USA
基金
美国国家科学基金会;
关键词
Topology; DCE-MRI; Persistent homology; Spatial attention; 3D CNN; pCR prediction; NEOADJUVANT CHEMOTHERAPY; TUMOR RESPONSE; CONTRALATERAL BREAST; CANCER; ENHANCEMENT; ASSOCIATION; MAMMOGRAPHY; WOMEN; SONOGRAPHY; SIZE;
D O I
10.1016/j.media.2024.103373
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Characterization of breast parenchyma in dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is a challenging task owing to the complexity of underlying tissue structures. Existing quantitative approaches, like radiomics and deep learning models, lack explicit quantification of intricate and subtle parenchymal structures, including fibroglandular tissue. To address this, we propose a novel topological approach that explicitly extracts multi-scale topological structures to better approximate breast parenchymal structures, and then incorporates these structures into a deep-learning-based prediction model via an attention mechanism. Our topology-informed deep learning model, TopoTxR, leverages topology to provide enhanced insights into tissues critical for disease pathophysiology and treatment response. We empirically validate TopoTxR using the VICTRE phantom breast dataset, showing that the topological structures extracted by our model effectively approximate the breast parenchymal structures. We further demonstrate TopoTxR's efficacy in predicting response to neoadjuvant chemotherapy. Our qualitative and quantitative analyses suggest differential topological behavior of breast tissue in treatment-na & iuml;ve imaging, inpatients who respond favorably to therapy as achieving pathological complete response (pCR) versus those who do not. Ina comparative analysis with several baselines on the publicly available I-SPY 1 dataset (N = 161, including 47 patients with pCR and 114 without) and the Rutgers proprietary dataset (N = 120, with 69 patients achieving pCR and 51 not), TopoTxR demonstrates a notable improvement, achieving a 2.6% increase inaccuracy and a 4.6% enhancement in AUC compared to the state-of-the-art method.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Early prediction of neoadjuvant chemotherapy response by exploiting a transfer learning approach on breast DCE-MRIs
    Maria Colomba Comes
    Annarita Fanizzi
    Samantha Bove
    Vittorio Didonna
    Sergio Diotaiuti
    Daniele La Forgia
    Agnese Latorre
    Eugenio Martinelli
    Arianna Mencattini
    Annalisa Nardone
    Angelo Virgilio Paradiso
    Cosmo Maurizio Ressa
    Pasquale Tamborra
    Vito Lorusso
    Raffaella Massafra
    Scientific Reports, 11
  • [2] Early prediction of neoadjuvant chemotherapy response by exploiting a transfer learning approach on breast DCE-MRIs
    Comes, Maria Colomba
    Fanizzi, Annarita
    Bove, Samantha
    Didonna, Vittorio
    Diotaiuti, Sergio
    La Forgia, Daniele
    Latorre, Agnese
    Martinelli, Eugenio
    Mencattini, Arianna
    Nardone, Annalisa
    Paradiso, Angelo Virgilio
    Ressa, Cosmo Maurizio
    Tamborra, Pasquale
    Lorusso, Vito
    Massafra, Raffaella
    SCIENTIFIC REPORTS, 2021, 11 (01)
  • [3] Topology-guided Adversarial Deep Mutual Learning for Knowledge Distillation
    Lai X.
    Qu Y.-Y.
    Xie Y.
    Pei Y.-L.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (01): : 102 - 110
  • [4] Robustness Evaluation of a Deep Learning Model on Sagittal and Axial Breast DCE-MRIs to Predict Pathological Complete Response to Neoadjuvant Chemotherapy
    Massafra, Raffaella
    Comes, Maria Colomba
    Bove, Samantha
    Didonna, Vittorio
    Gatta, Gianluca
    Giotta, Francesco
    Fanizzi, Annarita
    La Forgia, Daniele
    Latorre, Agnese
    Pastena, Maria Irene
    Pomarico, Domenico
    Rinaldi, Lucia
    Tamborra, Pasquale
    Zito, Alfredo
    Lorusso, Vito
    Paradiso, Angelo Virgilio
    JOURNAL OF PERSONALIZED MEDICINE, 2022, 12 (06):
  • [5] Early Prediction of Breast Cancer Recurrence for Patients Treated with Neoadjuvant Chemotherapy: A Transfer Learning Approach on DCE-MRIs
    Comes, Maria Colomba
    La Forgia, Daniele
    Didonna, Vittorio
    Fanizzi, Annarita
    Giotta, Francesco
    Latorre, Agnese
    Martinelli, Eugenio
    Mencattini, Arianna
    Paradiso, Angelo Virgilio
    Tamborra, Pasquale
    Terenzio, Antonella
    Zito, Alfredo
    Lorusso, Vito
    Massafra, Raffaella
    CANCERS, 2021, 13 (10)
  • [6] Topology-guided cyclic brain connectivity generation using geometric deep learning
    Sserwadda, Abubakhari
    Rekik, Islem
    JOURNAL OF NEUROSCIENCE METHODS, 2021, 353
  • [7] Exploring the complementarity of THz pulse imaging and DCE-MRIs: Toward a unified multi-channel classification and a deep learning framework
    Yin, X. -X.
    Zhang, Y.
    Cao, J.
    Wu, J. -L.
    Hadjiloucas, S.
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2016, 137 : 87 - 114
  • [8] A topology-guided high-quality solution learning framework for security-constraint unit commitment based on graph convolutional network
    Gao, Liqian
    Wei, Lishen
    Cui, Shichang
    Fang, Jiakun
    Ai, Xiaomeng
    Yao, Wei
    Wen, Jinyu
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2025, 164
  • [9] Prototype Learning Guided Hybrid Network for Breast Tumor Segmentation in DCE-MRI
    Zhou, Lei
    Zhang, Yuzhong
    Zhang, Jiadong
    Qian, Xuejun
    Gong, Chen
    Sun, Kun
    Ding, Zhongxiang
    Wang, Xing
    Li, Zhenhui
    Liu, Zaiyi
    Shen, Dinggang
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2025, 44 (01) : 244 - 258
  • [10] Classification of Breast Abnormalities Using a Deep Convolutional Neural Network and Transfer Learning
    A. N. Ruchai
    V. I. Kober
    K. A. Dorofeev
    V. N. Karnaukhov
    M. G. Mozerov
    Journal of Communications Technology and Electronics, 2021, 66 : 778 - 783