Application of machine learning in predicting preoperative Ki-67 expression level in breast cancer

被引:0
|
作者
Lu, Yan [1 ]
Ding, Ning [1 ]
Jin, Long [1 ]
机构
[1] Soochow Univ, Suzhou Peoples Hosp 9, Suzhou Hosp 9, Dept Radiol, 2666 Ludang Rd, Suzhou, Jiangsu, Peoples R China
关键词
D O I
10.1016/j.asjsur.2024.09.093
中图分类号
R61 [外科手术学];
学科分类号
摘要
引用
收藏
页码:1926 / 1927
页数:2
相关论文
共 50 条
  • [1] The value of multiparametric MRI radiomics and machine learning in predicting preoperative Ki-67 expression level in breast cancer
    Lu, Yan
    Jin, Long
    Ding, Ning
    Li, Mengjuan
    Yin, Shengnan
    Ji, Yiding
    BMC MEDICAL IMAGING, 2025, 25 (01):
  • [2] Ki-67 and breast cancer prognosis: does it matter if Ki-67 level is examined using preoperative biopsy or postoperative specimen?
    Choi, Soon Bo
    Park, Jung Min
    Ahn, Jee Hyun
    Go, Jieon
    Kim, Jeeye
    Park, Hyung Seok
    Kim, Seung Il
    Park, Byeong-Woo
    Park, Seho
    BREAST CANCER RESEARCH AND TREATMENT, 2022, 192 (02) : 343 - 352
  • [3] Ki-67 and breast cancer prognosis: does it matter if Ki-67 level is examined using preoperative biopsy or postoperative specimen?
    Soon Bo Choi
    Jung Min Park
    Jee Hyun Ahn
    Jieon Go
    Jeeye Kim
    Hyung Seok Park
    Seung Il Kim
    Byeong-Woo Park
    Seho Park
    Breast Cancer Research and Treatment, 2022, 192 : 343 - 352
  • [4] Predicting the expression level of Ki-67 in breast cancer using multi-modal ultrasound parameters
    Cheng, Chen
    Zhao, Hongyan
    Tian, Wei
    Hu, Chunhong
    Zhao, Haitao
    BMC MEDICAL IMAGING, 2021, 21 (01)
  • [5] Predicting the expression level of Ki-67 in breast cancer using multi-modal ultrasound parameters
    Chen Cheng
    Hongyan Zhao
    Wei Tian
    Chunhong Hu
    Haitao Zhao
    BMC Medical Imaging, 21
  • [6] DCE-MRI based deep learning analysis of intratumoral subregion for predicting Ki-67 expression level in breast cancer
    Ding, Zhimin
    Zhang, Chengmeng
    Xia, Cong
    Yao, Qi
    Wei, Yi
    Zhang, Xia
    Zhao, Nannan
    Wang, Xiaoming
    Shi, Suhua
    MAGNETIC RESONANCE IMAGING, 2025, 119
  • [7] Radiomic Machine Learning in Invasive Ductal Breast Cancer: Prediction of Ki-67 Expression Level Based on Radiomics of DCE-MRI
    Yang, Huan
    Wang, Wenxi
    Cheng, Zhiyong
    Zheng, Tao
    Cheng, Cheng
    Cheng, Mengyu
    Wang, Zhanqiu
    TECHNOLOGY IN CANCER RESEARCH & TREATMENT, 2024, 23
  • [8] Preoperative Prediction of Ki-67 Status in Breast Cancer with Multiparametric MRI Using Transfer Learning
    Liu, Weixiao
    Cheng, Yulin
    Liu, Zaiyi
    Liu, Chunling
    Cattell, Renee
    Xie, Xinyan
    Wang, Yingyi
    Yang, Xiaojun
    Ye, Weitao
    Liang, Cuishan
    Li, Jiao
    Gao, Ying
    Huang, Chuan
    Liang, Changhong
    ACADEMIC RADIOLOGY, 2021, 28 (02) : E44 - E53
  • [9] Preoperative Computed Tomography Radiomics Analysis for Predicting Receptors Status and Ki-67 Levels in Breast Cancer
    Fan, Yuan
    Pan, Xuelin
    Yang, Fan
    Liu, Siyun
    Wang, Zhu
    Sun, Jiayu
    Chen, Jie
    AMERICAN JOURNAL OF CLINICAL ONCOLOGY-CANCER CLINICAL TRIALS, 2022, 45 (12): : 526 - 533
  • [10] Machine-Learning and RadiomicsBased Preoperative Prediction of Ki-67 Expression in Glioma Using MRI Data
    Ni, Jiaying
    Zhang, Hongjian
    Yang, Qing
    Fan, Xiao
    Xu, Junqing
    Sun, Jianing
    Zhang, Junxia
    Hu, Yifang
    Xiao, Zheming
    Zhao, Yuhong
    Zhu, Hongli
    Shi, Xian
    Feng, Wei
    Wang, Junjie
    Wan, Cheng
    Zhang, Xin
    Liu, Yun
    You, Yongping
    Yu, Yun
    ACADEMIC RADIOLOGY, 2024, 31 (08) : 3397 - 3405