FRACTIONAL ORDER OPERATIONAL CALCULUS AND EXTENDED HERMITE-APOSTOL TYPE FROBENIUS-EULER POLYNOMIALS

被引:1
|
作者
Wani, Shahid Ahmad [1 ]
Riyasat, Mumtaz [2 ]
机构
[1] Symbiosis Int Deemed Univ, Symbiosis Inst Technol, Dept Appl Sci, Pune, India
[2] Aligarh Muslim Univ, Zakir Hussain Coll Engn & Technol, Dept Appl Math, Aligarh, India
来源
关键词
quasi-monomiality; extended Hermite-Apostol type Frobenius-Euler polynomials; fractional operators; operational rules; integral transforms;
D O I
10.2298/PIM2430087W
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The combined use of integral transforms and special classes of polynomials provides a powerful tool to deal with models based on fractional order derivatives. In this article, the operational representations for the extended Hermite-Apostol type Frobenius-Euler polynomials are introduced via integral transforms. The recurrence relations and some identities involving these polynomials are established. Finally, the quasi-monomial properties for the Hermite-Apostol type Frobenius-Euler polynomials and for their extended forms are derived.
引用
收藏
页码:87 / 96
页数:10
相关论文
共 50 条
  • [1] A study on extended form of multivariable Hermite-Apostol type Frobenius-Euler polynomials via fractional operators
    Zayed, Mohra
    Wani, Shahid Ahmad
    Oros, Georgia Irina
    Ramriez, William
    AIMS MATHEMATICS, 2024, 9 (06): : 16297 - 16312
  • [2] A New Class of Hermite-Apostol Type Frobenius-Euler Polynomials and Its Applications
    Araci, Serkan
    Riyasat, Mumtaz
    Wani, Shahid Ahmad
    Khan, Ubuhi
    SYMMETRY-BASEL, 2018, 10 (11):
  • [3] INTEGRAL TRANSFORMS AND EXTENDED HERMITE-APOSTOL TYPE FROBENIUS-GENOCCHI POLYNOMIALS
    Wani, Shahid Ahmad
    Riyasat, Mumtaz
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2024, 48 (01): : 41 - 53
  • [4] On the generalized Apostol-type Frobenius-Euler polynomials
    Burak Kurt
    Yilmaz Simsek
    Advances in Difference Equations, 2013
  • [5] On the generalized Apostol-type Frobenius-Euler polynomials
    Kurt, Burak
    Simsek, Yilmaz
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [6] APOSTOL TYPE (p, q)-FROBENIUS-EULER POLYNOMIALS AND NUMBERS
    Duran, Ugur
    Acikgoz, Mehmet
    KRAGUJEVAC JOURNAL OF MATHEMATICS, 2018, 42 (04): : 555 - 567
  • [7] Umbral Calculus and the Frobenius-Euler Polynomials
    Kim, Dae San
    Kim, Taekyun
    Lee, Sang-Hun
    ABSTRACT AND APPLIED ANALYSIS, 2013,
  • [8] A new class of generalized Apostol-type Frobenius-Euler polynomials
    Castilla, Letelier
    Ramirez, William
    Cesarano, Clemente
    Wani, Shahid Ahmad
    Heredia-Moyano, Maria-Fernanda
    AIMS MATHEMATICS, 2025, 10 (02): : 3623 - 3641
  • [9] Generating Functions for q-Apostol Type Frobenius-Euler Numbers and Polynomials
    Simsek, Yilmaz
    AXIOMS, 2012, 1 (03) : 395 - 403
  • [10] IDENTITIES AND RELATIONS ON THE q-APOSTOL TYPE FROBENIUS-EULER NUMBERS AND POLYNOMIALS
    Kucukoglu, Irem
    Simsek, Yilmaz
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 56 (01) : 265 - 284