The Chance Constrained Travelling Thief Problem: Problem Formulations and Algorithms

被引:0
|
作者
Don, Thilina Pathirage [1 ]
Neumann, Aneta [1 ]
Neumann, Frank [1 ]
机构
[1] Univ Adelaide, Optimisat & Logist, Sch Comp & Math Sci, Adelaide, SA, Australia
来源
PROCEEDINGS OF THE 2024 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, GECCO 2024 | 2024年
基金
澳大利亚研究理事会;
关键词
Travelling thief problem; chance constraints; search heuristics;
D O I
10.1145/3638529.3654014
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The travelling thief problem (TTP) is a multi-component combinatorial optimization problem that has gained significant attention in the evolutionary computation and heuristic search literature. In this paper, we introduce the chance constrained TTP which involves stochastic weights. Our problem formulation captures the stochastic aspect of the knapsack in the form of a chance constraint. Such a constraint can only be violated with a small probability. We introduce surrogate and sampling-based approaches for the chance constrained TTP to optimize the expected objective score under the condition that the solution is feasible with a high probability. We use these approaches to evaluate the feasibility of solutions and incorporate our approaches into high-performing algorithms for deterministic TTP. In our experimental investigations, we compare the performance of these algorithms and show the impact of uncertainty in connection with the underlying stochastic model.
引用
收藏
页码:214 / 222
页数:9
相关论文
共 50 条
  • [1] On the Use of Quality Diversity Algorithms for the Travelling Thief Problem
    Nikfarjam A.
    Neumann A.
    Neumann F.
    ACM. Trans. Evol. Learn. Optim., 2024, 2
  • [2] Greedy Heuristics for the Travelling Thief Problem
    Gupta, Bishwas C.
    Prakash, V. Prem
    PROCEEDINGS OF THE 2015 39TH NATIONAL SYSTEMS CONFERENCE (NSC), 2015,
  • [3] Evolutionary Algorithms for the Chance-Constrained Knapsack Problem
    Xie, Yue
    Harper, Oscar
    Assimi, Hirad
    Neumann, Aneta
    Neumann, Frank
    PROCEEDINGS OF THE 2019 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE (GECCO'19), 2019, : 338 - 346
  • [4] A fitness landscape analysis of the Travelling Thief Problem
    El Yafrani, Mohamed
    Martins, Marcella S. R.
    El Krari, Mehdi
    Wagner, Markus
    Delgado, Myriam R. B. S.
    Ahiod, Belaid
    Luders, Ricardo
    GECCO'18: PROCEEDINGS OF THE 2018 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, 2018, : 277 - 284
  • [5] Exact algorithms for the chance-constrained vehicle routing problem
    Thai Dinh
    Fukasawa, Ricardo
    Luedtke, James
    MATHEMATICAL PROGRAMMING, 2018, 172 (1-2) : 105 - 138
  • [6] Exact algorithms for the chance-constrained vehicle routing problem
    Thai Dinh
    Ricardo Fukasawa
    James Luedtke
    Mathematical Programming, 2018, 172 : 105 - 138
  • [7] Exact Algorithms for the Chance-Constrained Vehicle Routing Problem
    Thai Dinh
    Fukasawa, Ricardo
    Luedtke, James
    INTEGER PROGRAMMING AND COMBINATORIAL OPTIMIZATION, IPCO 2016, 2016, 9682 : 89 - 101
  • [8] Formulations and Branch-and-cut algorithms for the Period Travelling Salesman Problem
    Henriques, Sofia
    Paias, Ana
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2025, 323 (03) : 739 - 752
  • [9] A Guided Local Search Approach for the Travelling Thief Problem
    Nieto-Fuentes, Ricardo
    Segura, Carlos
    Ivvan Valdez, S.
    2018 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2018, : 1176 - 1183
  • [10] On the Fitness Landscapes of Interdependency Models in the Travelling Thief Problem
    El Yafrani, Mohamed
    Scoczynski, Marcella
    Delgado, Myriam R. B. S.
    Lueders, Ricardo
    Nielsen, Peter
    Wagner, Markus
    PROCEEDINGS OF THE 2022 GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE COMPANION, GECCO 2022, 2022, : 188 - 191