An improved particle swarm optimization for multilevel thresholding medical image segmentation

被引:0
|
作者
Ma, Jiaqi [1 ]
Hu, Jianmin [1 ]
机构
[1] Chinese Acad Sci, GBA Branch Aerosp Informat Res Inst, Guangzhou, Guangdong, Peoples R China
来源
PLOS ONE | 2024年 / 19卷 / 12期
关键词
ENTROPY;
D O I
10.1371/journal.pone.0306283
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Multilevel thresholding image segmentation is one of the widely used image segmentation methods, and it is also an important means of medical image preprocessing. Replacing the original costly exhaustive search approach, swarm intelligent optimization algorithms are recently used to determine the optimal thresholds for medical image, and medical images tend to have higher bit depth. Aiming at the drawbacks of premature convergence of existing optimization algorithms for high-bit depth image segmentation, this paper presents a pyramid particle swarm optimization based on complementary inertia weights (CIWP-PSO), and the Kapur entropy is employed as the optimization objective. Firstly, according to the fitness value, the particle swarm is divided into three-layer structure. To accommodate the larger search range caused by higher bit depth, the particles in the layer with the worst fitness value are employed random opposition learning strategy. Secondly, a pair of complementary inertia weights are introduced to balance the capability of exploitation and exploration. In the part of experiments, this paper used nine high-bit depth benchmark images to test the CIWP-PSO effectiveness. Then, a group of Brain Magnetic Resonance Imaging (MRI) images with 12-bit depth are utilized to validate the advantages of CIWP-PSO compared with other segmentation algorithms based on other optimization algorithms. According to the segmentation experimental results, thresholds optimized by CIWP-PSO could achieve higher Kapur entropy, and the multi-level thresholding segmentation algorithm based on CIWP-PSO outperforms the similar algorithms in high-bit depth image segmentation. Besides, we used image segmentation quality metrics to evaluate the impact of different segmentation algorithms on images, and the experimental results show that the MRI images segmented by the CIWP-PSO has achieved the best fitness value more times than images segmented by other comparison algorithm in terms of Structured Similarity Index and Feature Similarity Index, which explains that the images segmented by CIWP-PSO has higher image quality.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Improved Particle Swarm Optimization Algorithm in Multilevel Image Thresholding
    Turajlic, Emir
    2024 IEEE 14TH SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS, ISCAIE 2024, 2024, : 424 - 428
  • [2] Multilevel Thresholding Algorithm Based on Particle Swarm Optimization for Image Segmentation
    Chen Wei
    Fang Kangling
    PROCEEDINGS OF THE 27TH CHINESE CONTROL CONFERENCE, VOL 7, 2008, : 348 - 351
  • [3] A Multilevel Thresholding Algorithm for Image Segmentation Based on Particle Swarm Optimization
    Dhieb, Molka
    Frikha, Mondher
    2016 IEEE/ACS 13TH INTERNATIONAL CONFERENCE OF COMPUTER SYSTEMS AND APPLICATIONS (AICCSA), 2016,
  • [4] Multilevel thresholding with divergence measure and improved particle swarm optimization algorithm for crack image segmentation
    Nie, Fangyan
    Liu, Mengzhu
    Zhang, Pingfeng
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [5] Multilevel thresholding with divergence measure and improved particle swarm optimization algorithm for crack image segmentation
    Fangyan Nie
    Mengzhu Liu
    Pingfeng Zhang
    Scientific Reports, 14
  • [6] Modified particle swarm optimization-based multilevel thresholding for image segmentation
    Liu, Yi
    Mu, Caihong
    Kou, Weidong
    Liu, Jing
    SOFT COMPUTING, 2015, 19 (05) : 1311 - 1327
  • [7] Color image segmentation using multilevel Thresholding—Hybrid particle swarm optimization
    Liu, Yang
    Hu, Kunyuan
    Zhu, Yunlong
    Chen, Hanning
    Lecture Notes in Electrical Engineering, 2015, 334 : 661 - 668
  • [8] Automatic Multilevel Thresholding using Binary Particle Swarm Optimization for image segmentation
    Djerou, Leila
    Khelil, Nacer
    Dehimi, Houssem Eddine
    Batouche, Mohamed
    2009 INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION, 2009, : 66 - +
  • [9] Modified particle swarm optimization-based multilevel thresholding for image segmentation
    Yi Liu
    Caihong Mu
    Weidong Kou
    Jing Liu
    Soft Computing, 2015, 19 : 1311 - 1327
  • [10] A multilevel thresholding method for image segmentation based on multiobjective particle swarm optimization
    Maryam, Habba
    Mustapha, Ameur
    Younes, Jabrane
    2017 INTERNATIONAL CONFERENCE ON WIRELESS TECHNOLOGIES, EMBEDDED AND INTELLIGENT SYSTEMS (WITS), 2017,