Lower N-weighted Ricci curvature bound with ε-range and displacement convexity of entropies

被引:0
|
作者
Kuwae, Kazuhiro [1 ]
Sakurai, Yohei [2 ]
机构
[1] Fukuoka Univ, Dept Appl Math, Fukuoka 8140180, Japan
[2] Saitama Univ, Dept Math, 255 Shimo Okubo,Sakura Ku, Saitama, Saitama 3388570, Japan
关键词
METRIC-MEASURE-SPACES; NEEDLE DECOMPOSITIONS; POLAR FACTORIZATION; COMPARISON GEOMETRY; MANIFOLDS; INEQUALITY; DIMENSION; RIGIDITY;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we provide a characterization of a lower N-weighted Ricci curvature bound for N is an element of]-infinity, 1] boolean OR [n, +infinity] with epsilon-range introduced by Lu-Minguzzi-Ohta [Comparison theorems on weighted Finsler manifolds and space-times with epsilon-range, Anal. Geom. Metr. Spaces 10(1) (2022) 1-30] in terms of a convexity of entropies over Wasserstein space. We further derive various interpolation inequalities and functional inequalities.
引用
收藏
页码:105 / 130
页数:26
相关论文
共 50 条