Development of a Drone-Based Phenotyping System for European Pear Rust (Gymnosporangium sabinae) in Orchards

被引:0
|
作者
Mass, Virginia [1 ]
Seidl-Schulz, Johannes [2 ]
Leipnitz, Matthias [2 ]
Fritzsche, Eric [3 ]
Geyer, Martin [1 ]
Pflanz, Michael [1 ]
Reim, Stefanie [3 ]
机构
[1] Leibniz Inst Agr Engn & Bioecon e V ATB, Dept Agromechatron, D-14469 Potsdam, Germany
[2] Gesell Umweltplanungssyteme mbH, Geokonzept, D-85111 Adelschlag, Germany
[3] Julius Kuhn Inst JKI, Inst Breeding Res Fruit Crops, Fed Res Ctr Cultivated Plants, D-01326 Dresden, Germany
来源
AGRONOMY-BASEL | 2024年 / 14卷 / 11期
关键词
RGB; UAV; georeferencing; photogrammetry; object detection; YOLO; YOLOV8;
D O I
10.3390/agronomy14112643
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Computer vision techniques offer promising tools for disease detection in orchards and can enable effective phenotyping for the selection of resistant cultivars in breeding programmes and research. In this study, a digital phenotyping system for disease detection and monitoring was developed using drones, object detection and photogrammetry, focusing on European pear rust (Gymnosporangium sabinae) as a model pathogen. High-resolution RGB images from ten low-altitude drone flights were collected in 2021, 2022 and 2023. A total of 16,251 annotations of leaves with pear rust symptoms were created on 584 images using the Computer Vision Annotation Tool (CVAT). The YOLO algorithm was used for the automatic detection of symptoms. A novel photogrammetric approach using Agisoft's Metashape Professional software ensured the accurate localisation of symptoms. The geographic information system software QGIS calculated the infestation intensity per tree based on the canopy areas. This drone-based phenotyping system shows promising results and could considerably simplify the tasks involved in fruit breeding research.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] First Report of Gymnosporangium sabinae, European Pear Rust, on Bradford Pear in Michigan
    Yun, H. Y.
    Rossman, A. Y.
    Byrne, J.
    PLANT DISEASE, 2009, 93 (08) : 841 - 841
  • [2] First Report of European Pear Rust (Pear Trellis Rust) Caused by Gymnosporangium sabinae on Ornamental Pear (Pyrus calleryana) in Virginia
    Hansen, M. A.
    Demers, J.
    Sutphin, M.
    Yoder, K.
    Bush, E.
    Castlebury, L.
    PLANT DISEASE, 2016, 100 (10) : 2166 - 2166
  • [3] A RESISTANCE FACTOR OF PEAR CULTIVARS TO RUST, GYMNOSPORANGIUM-SABINAE (DICKS) WINT
    KHELADZE, VS
    DVURECHENSKAYATSKHVEDADZE, LP
    MIKOLOGIYA I FITOPATOLOGIYA, 1984, 18 (02): : 143 - 144
  • [4] Differences in Leaf Morphological Parameters of Pear (Pyrus communis L.) Based on Their Susceptibility to European Pear Rust Caused by Gymnosporangium sabinae (Dicks.) Oerst.
    Karklina, Katrina
    Lacis, Guitars
    Lace, Baiba
    PLANTS-BASEL, 2021, 10 (05):
  • [5] Development of a digital monitoring system for pear rust and fire blight in fruit orchards
    Reim, S.
    Pflanz, M.
    Mass, V.
    Geyer, M.
    Seidl-Schulz, J.
    Leipnitz, M.
    Fritzsche, E.
    Flachowsky, H.
    XXXI INTERNATIONAL HORTICULTURAL CONGRESS, IHC2022: III INTERNATIONAL SYMPOSIUM ON MECHANIZATION, PRECISION HORTICULTURE, AND ROBOTICS: PRECISION AND DIGITAL HORTICULTURE IN FIELD ENVIRONMENTS, 2023, 1360 : 291 - 297
  • [6] Drone-Based Bug Detection in Orchards with Nets: A Novel Orienteering Approach
    Sorbelli, Francesco Betti
    Coro, Federico
    Das, Sajal K.
    Palazzetti, Lorenzo
    Pinotti, Cristina M.
    ACM TRANSACTIONS ON SENSOR NETWORKS, 2024, 20 (03)
  • [7] First Report of the Pear Trellis Rust Fungus, Gymnosporangium sabinae, on Pyrus calleryana ('Bradford' and 'Chanticleer') and P. communis in New York State
    Kenaley, S.
    Daughtrey, M.
    O'Brien, D.
    Jensen, S.
    Snover-Clift, K.
    Hudler, G.
    PLANT DISEASE, 2012, 96 (09) : 1373 - 1374
  • [8] Drone-Based StereoDIC: System Development, Experimental Validation and Infrastructure Application
    Kalaitzakis, M.
    Vitzilaios, N.
    Rizos, D. C.
    Sutton, M. A.
    EXPERIMENTAL MECHANICS, 2021, 61 (06) : 981 - 996
  • [9] Drone-Based StereoDIC: System Development, Experimental Validation and Infrastructure Application
    M. Kalaitzakis
    N. Vitzilaios
    D. C. Rizos
    M. A. Sutton
    Experimental Mechanics, 2021, 61 : 981 - 996
  • [10] A Drone-based Application for Scouting Halyomorpha halys Bugs in Orchards with Multifunctional Nets
    Sorbelli, Francesco Betti
    Coro, Federico
    Das, Sajal K.
    Di Bella, Emanuele
    Maistrello, Lara
    Palazzetti, Lorenzo
    Pinotti, Cristina M.
    2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), 2022,