Local ε-conjecture and p-adic differential equations

被引:0
|
作者
Ishida, Tetsuya [1 ]
Nakamura, Kentaro [1 ]
机构
[1] Saga Univ, Dept Math, 1 Honjo, Saga 8408502, Japan
来源
DOCUMENTA MATHEMATICA | 2024年 / 29卷
关键词
p-adic Hodge theory; (Phi; Gamma)-module; Bloch-Kato's exponential; Perrin-Riou's exponential; IWASAWA THEORY; REPRESENTATIONS; (PHI; GAMMA)-MODULES; DISTRIBUTIONS; ISOMORPHISMS;
D O I
10.4171/DM/973
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Laurent Berger attached a p-adic differential equation N-rig (M) with a Frobenius structure to an arbitrary de Rham (phi, Gamma)-module M over a Robba ring. In this article, we compare the local epsilon conjecture for the cyclotomic deformation of M with that of N-rig (M) We first define an isomorphism between the fundamental lines of their cyclotomic deformations using the second author's results on the big exponential map. As a main result of the article, we show that this isomorphism enables us to reduce the local epsilon conjecture for the cyclotomic deformation of M to that of N-rig (M) The result can be regarded as a refined interpolation formula of the big exponential map.
引用
收藏
页码:1125 / 1156
页数:32
相关论文
共 50 条