Maritime decarbonization through machine learning: A critical systematic review of fuel and power prediction models

被引:0
|
作者
Nguyen, Son [1 ,2 ]
Gadel, Matthieu [3 ]
Wang, Ke [1 ]
Li, Jing [1 ,4 ]
Zhang, Xiaocai [1 ]
Kong, Siang-Ching [5 ]
Fu, Xiuju [1 ]
Qin, Zheng [1 ]
机构
[1] ASTAR, Inst High Performance Comp IHPC, 1 Fusionopolis Way,16-16 Connexis, Singapore 138632, Singapore
[2] RMIT Univ, Business Sch, Ho Chi Minh City 700000, Vietnam
[3] Bur Veritas Marine & Offshore SAS, 4 Pl Saisons, F-92400 Courbevoie, France
[4] ASTAR, Ctr Frontier AI Res CFAR, 1 Fusionopolis Way, 16-16 Connexis, Singapore 138632, Singapore
[5] Bur Veritas Marine Singapore Pte Ltd, 20 Sci Pk Rd, 03-01 Teletech Pk, Singapore 117674, Singapore
来源
关键词
Maritime transportation; Maritime decarbonization; Fuel consumption; Power requirement; Machine learning; Literature review; TRIM OPTIMIZATION;
D O I
10.1016/j.clscn.2025.100210
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
A vital component of decarbonization and operational optimization in the maritime industry is predicting ship propulsion power requirements and fuel consumption rates. This study systematically and critically reviews the application of machine learning (ML) in fuel and power estimation and prediction (FEP) in the last decade (2013-2024) regarding the two cores of ML models, including aspects of data and the applied learning algorithms. This study revealed the urgent need of the field in data-centricity and standardization of model performance benchmarking that covers more than just accuracy. Research directions were recommended, focusing on reliable and applicable FEP, objective-specific development, and model trustworthiness and maintenance policies. This paper advocates a practical application of ML and other AI applications in real-world settings to support their certifiability and the development of related policies and regulations, thus enhancing the transition toward robust data-driven decarbonization and operational efficiency.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] Machine learning for electric power prediction: a systematic literature review
    Yandar, Kandel L.
    Revelo-Sanchez, Oscar
    Bolanos-Gonzalez, Manuel E.
    INGENIERIA Y COMPETITIVIDAD, 2024, 26 (02):
  • [2] A systematic review of machine learning models for management, prediction and classification of ARDS
    Tran, Tu K.
    Tran, Minh C.
    Joseph, Arun
    Phan, Phi A.
    Grau, Vicente
    Farmery, Andrew D.
    RESPIRATORY RESEARCH, 2024, 25 (01)
  • [3] Evaluating machine learning models for sepsis prediction: A systematic review of methodologies
    Deng, Hong-Fei
    Sun, Ming-Wei
    Wang, Yu
    Zeng, Jun
    Yuan, Ting
    Li, Ting
    Li, Di-Huan
    Chen, Wei
    Zhou, Ping
    Wang, Qi
    Jiang, Hua
    ISCIENCE, 2022, 25 (01)
  • [4] Machine Learning Approaches for Power System Parameters Prediction: A Systematic Review
    Makanju, Tolulope David
    Shongwe, Thokozani
    Famoriji, Oluwole John
    IEEE ACCESS, 2024, 12 : 66646 - 66679
  • [5] Comprehensive accurate prediction of critical jet fuel properties with multiple machine learning models
    Shao, Yitong
    Yu, Mengxian
    Zhao, Mengchao
    Xue, Kang
    Zhang, Xiangwen
    Zou, Ji-Jun
    Pan, Lun
    CHEMICAL ENGINEERING SCIENCE, 2025, 304
  • [6] A systematic and critical review on development of machine learning based-ensemble models for prediction of adsorption process efficiency
    Abbasi, Elahe
    Moghaddam, Mohammad Reza Alavi
    Kowsari, Elaheh
    JOURNAL OF CLEANER PRODUCTION, 2022, 379
  • [7] COVID Mortality Prediction with Machine Learning Methods: A Systematic Review and Critical Appraisal
    Bottino, Francesca
    Tagliente, Emanuela
    Pasquini, Luca
    Di Napoli, Alberto
    Lucignani, Martina
    Figa-Talamanca, Lorenzo
    Napolitano, Antonio
    JOURNAL OF PERSONALIZED MEDICINE, 2021, 11 (09):
  • [8] CRITICAL APPRAISAL OF MACHINE LEARNING PROGNOSTIC MODELS FOR ACUTE PANCREATITIS: A SYSTEMATIC REVIEW
    Lahooti, Ila
    Critelli, Brian
    Hassan, Amier
    Lahooti, Ali
    Matzko, Nathan
    Adams, Jan Niklas
    Liss, Lukas
    Quion, Justin
    Restrepo, David
    Nikahd, Melica
    Culp, Stacey
    Noh, Lydia
    Park, Jun Sung
    Tong, Kathleen
    Akshintala, Venkata S.
    Windsor, John A.
    Mull, Nikhil K.
    Papachristou, Georgios
    Krishna, Somashekar G.
    Han, Samuel
    Ramsey, Mitchell L.
    Hart, Phil A.
    Celi, Leo Anthony
    Lee, Peter
    GASTROENTEROLOGY, 2024, 166 (05) : S286 - S286
  • [9] Opportunities and challenges of machine learning models for prediction and diagnosis of spondylolisthesis: A systematic review
    Saravagi D.
    Agrawal S.
    Saravagi M.
    International Journal of Engineering Systems Modelling and Simulation, 2021, 12 (2-3): : 127 - 138
  • [10] Machine learning prediction models in orthopedic surgery: A systematic review in transparent reporting
    Groot, Olivier Q.
    Ogink, Paul T.
    Lans, Amanda
    Twining, Peter K.
    Kapoor, Neal D.
    DiGiovanni, William
    Bindels, Bas J. J.
    Bongers, Michiel E. R.
    Oosterhoff, Jacobien H. F.
    Karhade, Aditya, V
    Oner, F. C.
    Verlaan, Jorrit-Jan
    Schwab, Joseph H.
    JOURNAL OF ORTHOPAEDIC RESEARCH, 2022, 40 (02) : 475 - 483