Laplace Power-Expected-Posterior Priors for Logistic Regression

被引:0
|
作者
Porwal, Anupreet [1 ]
Rodriguez, Abel [1 ]
机构
[1] Univ Washington, Dept Stat, Seattle, WA 98195 USA
来源
BAYESIAN ANALYSIS | 2024年 / 19卷 / 04期
关键词
generalized linear model; logistic regression; Bayesian model selection; expected-posterior priors; default priors; GENERALIZED LINEAR-MODELS; VARIABLE SELECTION; BAYESIAN MODEL; PRIOR DISTRIBUTIONS; LIKELIHOOD; SHRINKAGE; EXISTENCE; INFERENCE; MIXTURES;
D O I
10.1214/23-BA1389
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Power-expected-posterior (PEP) methodology, which borrows ideas from the literature on power priors, expected-posterior priors and unit information priors, provides a systematic way to construct objective priors. The basic idea is to use imaginary training samples to update a (possibly improper) prior into a proper but minimally-informative one. In this work, we develop a novel definition of PEP priors for logistic regression models that relies on a Laplace expansion of the likelihood of the imaginary training sample. This approach has various advantages over previous proposals for non-informative priors in logistic regression, and can be easily extended to other generalized linear models. We study theoretical properties of the prior and provide a number of empirical studies that demonstrate superior performance both in terms of model selection and of parameter estimation, especially for heavy-tailed versions.
引用
收藏
页码:1163 / 1186
页数:24
相关论文
共 50 条
  • [1] A Comparison of Power-Expected-Posterior Priors in Shrinkage Regression
    Tzoumerkas, G.
    Fouskakis, D.
    Ntzoufras, I
    JOURNAL OF STATISTICAL THEORY AND PRACTICE, 2022, 16 (04)
  • [2] Variations of power-expected-posterior priors in normal regression models
    Fouskakis, Dimitris
    Ntzoufras, Ioannis
    Perrakis, Konstantinos
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2020, 143
  • [3] Power-Expected-Posterior Methodology with Baseline Shrinkage Priors
    Tzoumerkas, G.
    Fouskakis, D.
    NEW FRONTIERS IN BAYESIAN STATISTICS, BAYSM 2021, 2022, 405 : 35 - 44
  • [4] Power-Expected-Posterior Priors for Generalized Linear Models
    Fouskakis, Dimitris
    Ntzoufras, Ioannis
    Perrakis, Konstantinos
    BAYESIAN ANALYSIS, 2018, 13 (03): : 721 - 748
  • [5] Bayesian Model Averaging Using Power-Expected-Posterior Priors
    Fouskakis, Dimitris
    Ntzoufras, Ioannis
    ECONOMETRICS, 2020, 8 (02)
  • [6] Power-Expected-Posterior Priors as Mixtures of g-Priors in Normal Linear Models
    Fouskakis, Dimitris
    Ntzoufras, Ioannis
    BAYESIAN ANALYSIS, 2022, 17 (04): : 1073 - 1099
  • [7] Power-Expected-Posterior Priors for Variable Selection in Gaussian Linear Models
    Fouskakis, Dimitris
    Ntzoufras, Ioannis
    Draper, David
    BAYESIAN ANALYSIS, 2015, 10 (01): : 75 - 107
  • [8] A Comparison of Power–Expected–Posterior Priors in Shrinkage Regression
    G. Tzoumerkas
    D. Fouskakis
    I. Ntzoufras
    Journal of Statistical Theory and Practice, 2022, 16
  • [9] Information consistency of the Jeffreys power-expected-posterior prior in Gaussian linear models
    Fouskakis D.
    Ntzoufras I.
    METRON, 2017, 75 (3) : 371 - 380
  • [10] Limiting behavior of the Jeffreys power-expected-posterior Bayes factor in Gaussian linear models
    Fouskakis, D.
    Ntzoufras, I.
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2016, 30 (02) : 299 - 320