Valorizing tail gas for superior hydrocarbon output in CO2-based Fischer-Tropsch synthesis

被引:0
|
作者
Chen, Jingyu [1 ,2 ]
Zhang, Leiyu [3 ]
Park, Hae-Gu [2 ]
Min, Ji-Eun [2 ]
Min, Hyung-Ki [2 ]
Kim, Jeong-Rang [2 ]
Zhang, Chundong [3 ]
Jun, Ki-Won [2 ]
Kim, Seok Ki [4 ,5 ]
机构
[1] Korea Univ Sci & Technol UST, Adv Mat & Chem Engn, Yuseong, Daejeon 34113, South Korea
[2] Carbon Resources Inst, Korea Res Inst Chem Technol KRICT, Hydrogen & C1 Gas Res Ctr, Daejeon 34114, South Korea
[3] Nanjing Tech Univ, Coll Chem Engn, State Key Lab Mat Oriented Chem Engn, Nanjing 211816, Peoples R China
[4] Ajou Univ, Dept Energy Syst Res, Suwon 16499, South Korea
[5] Ajou Univ, Dept Chem Engn, Suwon 16499, South Korea
基金
新加坡国家研究基金会;
关键词
CO; 2; hydrogenation; Tandem reactor; Fischer-Tropsch synthesis; Aromatics; Liquid fuel; CO2; HYDROGENATION; HETEROGENEOUS CATALYSTS; OLEFIN OLIGOMERIZATION; LIGHT-HYDROCARBONS; BTEX AROMATICS; HZSM-5; CONVERSION; FUELS; TRANSFORMATION; DEACTIVATION;
D O I
10.1016/j.cej.2024.158531
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
CO2 conversion to liquid fuels requires efficient processes that offer both high selectivity and product flexibility. Here, we demonstrate a two-stage reaction system that combines CO2 hydrogenation over KFeZn catalyst with hydrocarbon oligomerization using HZSM-5 zeolite. The system's product distribution can be precisely controlled through reaction conditions in the secondary reactor. Operating at 300 degrees C and 1 bar produces aromatic-rich liquid hydrocarbons with 31.7 % selectivity, while at 250 degrees C, the process yields gasoline-range products at 10 bar or jet fuel-range hydrocarbons at 20 bar. The system maintains stability for 120 h with approximately 72 % C5+ selectivity under optimal conditions (250 degrees C, 20 bar). The zeolite catalyst shows effective regeneration capability, and the produced hydrocarbons feature extensive branching, suggesting improved octane ratings. Model gas experiments demonstrate that temperature significantly influences hydrocarbon reactivity, with the tandem setup particularly promoting hetero-oligomerization of 1-butene. Process analysis reveals enhanced energy efficiency and economic viability compared to single-reactor systems, while maintaining the advantage of tunable product composition.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Valorizing tail gas for superior hydrocarbon output in CO2-based Fischer-Tropsch synthesis
    Zhang, Chundong (zhangcd@njtech.edu.cn), 1600, Elsevier B.V. (503):
  • [2] Detailed Kinetic Modeling of CO2-Based Fischer-Tropsch Synthesis
    Bruebach, Lucas
    Hodonj, Daniel
    Biffar, Linus
    Pfeifer, Peter
    CATALYSTS, 2022, 12 (06)
  • [3] Economic and Environmental Barriers of CO2-Based Fischer-Tropsch Electro-Diesel
    Medrano-Garcia, Juan D.
    Charalambous, Margarita A.
    Guillen-Gosalbez, Gonzalo
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2022, 10 (36) : 11751 - 11759
  • [4] GROWTH OF HYDROCARBON CHAINS IN THE FISCHER-TROPSCH SYNTHESIS
    MADON, RJ
    JOURNAL OF CATALYSIS, 1979, 57 (01) : 183 - 186
  • [5] Insights into CO activation and hydrocarbon chain growth in Fischer-Tropsch synthesis
    Hibbitts, David
    Dybeck, Eric
    Lawlor, Thomas
    Neurock, Matthew
    Iglesia, Enrique
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [6] Effect of Tail Gas Recirculation Mode on the Activity and Selectivity of the Co/SiO2 Catalyst for Fischer-Tropsch Synthesis
    Soromotin, V. N.
    Yakovenko, R. E.
    Krasnyakova, T. V.
    Svetogorov, R. D.
    Mitchenko, S. A.
    KINETICS AND CATALYSIS, 2022, 63 (06) : 765 - 772
  • [7] The activity of Fischer-Tropsch catalysts in hydrocarbon synthesis from dilute gas mixtures
    Vytnova, LA
    Kliger, GA
    Bogolepova, EI
    Shuikin, AN
    Kurkin, VI
    Kuz'min, AE
    Slivinskii, EV
    Zaikin, VG
    PETROLEUM CHEMISTRY, 2001, 41 (03) : 182 - 189
  • [8] SKELETAL COBALT FOR HYDROCARBON SYNTHESIS BY FISCHER-TROPSCH METHOD
    Solomonik, I. G.
    Gryaznov, K. O.
    Mitberg, E. B.
    Mordkovich, V. Z.
    IZVESTIYA VYSSHIKH UCHEBNYKH ZAVEDENII KHIMIYA I KHIMICHESKAYA TEKHNOLOGIYA, 2020, 63 (12): : 71 - 76
  • [9] THE MECHANISM OF CHAIN GROWTH IN THE FISCHER-TROPSCH HYDROCARBON SYNTHESIS
    Joyner, Richard W.
    CATALYSIS LETTERS, 1988, 1 (10) : 307 - 310
  • [10] MECHANISM OF HYDROCARBON SYNTHESIS OVER FISCHER-TROPSCH CATALYSTS
    BILOEN, P
    SACHTLER, WMH
    ADVANCES IN CATALYSIS, 1981, 30 : 165 - 216