Demystifying multiple sclerosis diagnosis using interpretable and understandable artificial intelligence

被引:0
|
作者
Chadaga, Krishnaraj [1 ]
Khanna, Varada Vivek [2 ]
Prabhu, Srikanth [1 ]
Sampathila, Niranjana [3 ]
Chadaga, Rajagopala [4 ]
Palkar, Anisha [3 ]
机构
[1] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Comp Sci & Engn, Manipal 576104, Karnataka, India
[2] Yale Univ, Yale Sch Publ Hlth, Dept Biostat, New Haven, CT 06510 USA
[3] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Biomed Engn, Manipal 576104, Karnataka, India
[4] Manipal Acad Higher Educ, Manipal Inst Technol, Dept Mech & Ind Engn, Manipal 576104, Karnataka, India
关键词
Bayesian optimization; explainable artificial intelligence; hyperparameter tuning techniques; machine learning; multiple sclerosis; MACHINE LEARNING ALGORITHMS; MRI;
D O I
10.1515/jisys-2024-0077
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Multiple sclerosis (MS) is a dangerous illness that strikes the central nervous system. The body's immune system attacks myelin (an entity above the nerves) and impairs brain-to-body communication. To date, it is not possible to cure MS. However, symptoms can be managed, and treatments can be provided if the disease is diagnosed early. Hence, supervised machine learning (ML) algorithms and several hyperparameter tuning techniques, including Bayesian optimization, have been utilized in this study to predict MS in patients. Descriptive and inferential statistical analysis has been conducted before training the classifiers. The most essential markers were chosen using a technique called mutual information. Among the search techniques, the Bayesian optimization search technique prevailed to be pre-eminent, with an accuracy of 89%. To comprehend the diagnosis generated by the ML classifiers, four techniques of explainable artificial intelligence were utilized. According to them, the crucial attributes are periventricular magnetic resonance imaging (MRI), infratentorial MRI, oligoclonal bands, spinal cord MRI, breastfeeding, varicella disease, and initial symptoms. The models could be deployed in various medical facilities to detect MS in patients. The doctors could also use this framework to get a second opinion regarding the diagnosis.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Artificial intelligence techniques in the diagnosis of multiple sclerosis
    Costa, G. Dalla
    Di Maggio, G.
    Moiola, L.
    Leocani, L.
    Furlan, R.
    Filippi, M.
    Comi, G.
    Martinelli, V.
    EUROPEAN JOURNAL OF NEUROLOGY, 2014, 21 : 128 - 128
  • [2] Artificial intelligence techniques in the diagnosis of multiple sclerosis
    Dalla Costa, G.
    Di Maggio, G.
    Moiola, L.
    Leocani, L.
    Furlan, R.
    Filippi, M.
    Comi, G.
    Martinelli, V.
    JOURNAL OF NEUROLOGY, 2014, 261 : S91 - S92
  • [3] Artificial intelligence in the diagnosis of multiple sclerosis: A systematic review
    Nabizadeh, Fardin
    Masrouri, Soroush
    Ramezannezhad, Elham
    Ghaderi, Ali
    Sharafi, Amir Mohammad
    Soraneh, Soroush
    Moghadasi, Abdorreza Naser
    MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2022, 59
  • [4] Diagnosis of multiple sclerosis using optical coherence tomography supported by artificial intelligence
    Ortiz, Miguel
    Mallen, Victor
    Boquete, Luciano
    Sanchez-Morla, Eva M.
    Cordon, Beatriz
    Vilades, Elisa
    Dongil-Moreno, Francisco J.
    Miguel-Jimenez, Juan M.
    Garcia-Martin, Elena
    MULTIPLE SCLEROSIS AND RELATED DISORDERS, 2023, 74
  • [5] Artificial intelligence techniques in the diagnosis of clinically definite multiple sclerosis
    Dalla Costa, G.
    Moiola, L.
    Leocani, L.
    Furlan, R.
    Filippi, M.
    Comi, G.
    Martinelli, V.
    MULTIPLE SCLEROSIS JOURNAL, 2014, 20 : 170 - 170
  • [6] Diagnosis of multiple sclerosis using optical coherence tomography supported by explainable artificial intelligence
    Dongil-Moreno, F. J.
    Ortiz, M.
    Pueyo, A.
    Boquete, L.
    Sanchez-Morla, E. M.
    Jimeno-Huete, D.
    Miguel, J. M.
    Barea, R.
    Vilades, E.
    Garcia-Martin, E.
    EYE, 2024, 38 (08) : 1502 - 1508
  • [7] Artificial Intelligence and Multiple Sclerosis
    Amin, Moein
    Martinez-Heras, Eloy
    Ontaneda, Daniel
    Carrasco, Ferran Prados
    CURRENT NEUROLOGY AND NEUROSCIENCE REPORTS, 2024, 24 (08) : 233 - 243
  • [8] Demystifying artificial intelligence
    Suaiden, Emir Jose
    REVISTA IBERO-AMERICANA DE CIENCIA DA INFORMACAO, 2022, 15 (02): : 609 - 610
  • [9] An interpretable schizophrenia diagnosis framework using machine learning and explainable artificial intelligence
    Shivaprasad, Samhita
    Chadaga, Krishnaraj
    Dias, Cifha Crecil
    Sampathila, Niranjana
    Prabhu, Srikanth
    SYSTEMS SCIENCE & CONTROL ENGINEERING, 2024, 12 (01)
  • [10] Demystifying artificial intelligence in pharmacy
    Nelson, Scott D.
    Walsh, Colin G.
    Olsen, Casey A.
    McLaughlin, Andrew J.
    LeGrand, Joseph R.
    Schutz, Nick
    Lasko, Thomas A.
    AMERICAN JOURNAL OF HEALTH-SYSTEM PHARMACY, 2020, 77 (19) : 1556 - 1570