Field-deployable real-time AI System for chemical warfare agent detection using YOLOv8 and colorimetric sensors

被引:0
|
作者
Bae, Sojeong [1 ]
Kang, Ku [1 ]
Kim, Young Kyun [2 ]
Jang, Yoon Jeong [3 ]
Lee, Doo-Hee [1 ]
机构
[1] Minist Natl Def, CBRN Def Res Inst, Seoul 06796, South Korea
[2] Republ Korea Army, Gyeryong, South Korea
[3] Minist Natl Def, Korea Arms Control Verificat Agcy, 15 Seobinggo-ro 24 Gil, Seoul 04387, South Korea
关键词
Chemical warfare detection; Real-time AI; Colorimetric sensing; Lightweight model; Chemometrics;
D O I
10.1016/j.chemolab.2025.105365
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Chemical warfare agents (CWAs) pose serious risks, requiring rapid, accurate detection. This study presents a real-time, lightweight AI system using YOLOv8 and colorimetric sensors, designed for field deployment. A dataset of 1,340 images captured under varying conditions enhances robustness. The model achieves 91.3% mAP@0.5 and 10.4 ms/frame inference time on portable hardware. This system bridges the gap between laboratory methods and scalable field detection, ensuring efficient, on-site CWA identification for military, emergency response, and public health applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Real-time detection of chemical warfare agent simulants in forensic samples using active capillary plasma ionization with benchtop and field-deployable mass spectrometers
    Dumlao, Morphy
    Sinues, Pablo Martinez-Lozano
    Nudnova, Maryia
    Zenobi, Renato
    ANALYTICAL METHODS, 2014, 6 (11) : 3604 - 3609
  • [2] Leishmania Detection in Sand Flies Using a Field-Deployable Real-Time Analytic System
    McAvin, James C.
    Swanson, Katherine I.
    Chan, Adeline S. T.
    Quintana, Miguel
    Coleman, Russell E.
    MILITARY MEDICINE, 2012, 177 (04) : 460 - 466
  • [3] Real-Time Vehicles Detection with YOLOv8
    Lin, Chih-Jer
    Lee, Chi-Mo
    2024 11TH INTERNATIONAL CONFERENCE ON CONSUMER ELECTRONICS-TAIWAN, ICCE-TAIWAN 2024, 2024, : 805 - 806
  • [4] Real-Time Waste Detection Based on YOLOv8
    Mehadjbia, Abdelhak
    Slaoui-Hasnaoui, Fouad
    4TH INTERDISCIPLINARY CONFERENCE ON ELECTRICS AND COMPUTER, INTCEC 2024, 2024,
  • [5] Real-Time Banana Ripeness Detection and Classification using YOLOv8
    Baldovino, Renann G.
    Lim, Raphael Antoine U.
    Salvador, Patrick Reylie R.
    Tiamzon, Euri Andre P.
    9TH INTERNATIONAL CONFERENCE ON MECHATRONICS ENGINEERING, ICOM 2024, 2024, : 219 - 223
  • [6] Field-deployable rapid multiple biosensing system for detection of chemical and biological warfare agents
    Masato Saito
    Natsuko Uchida
    Shunsuke Furutani
    Mizuho Murahashi
    Wilfred Espulgar
    Naoki Nagatani
    Hidenori Nagai
    Yuki Inoue
    Tomohiko Ikeuchi
    Satoshi Kondo
    Hirotaka Uzawa
    Yasuo Seto
    Eiichi Tamiya
    Microsystems & Nanoengineering, 4
  • [7] Field-deployable rapid multiple biosensing system for detection of chemical and biological warfare agents
    Saito, Masato
    Uchida, Natsuko
    Furutani, Shunsuke
    Murahashi, Mizuho
    Espulgar, Wilfred
    Nagatani, Naoki
    Nagai, Hidenori
    Inoue, Yuki
    Ikeuchi, Tomohiko
    Kondo, Satoshi
    Uzawa, Hirotaka
    Seto, Yasuo
    Tamiya, Eiichi
    MICROSYSTEMS & NANOENGINEERING, 2018, 4
  • [8] Real-Time Detection of Crop Leaf Diseases Using Enhanced YOLOv8 algorithm
    Orchi, Houda
    Sadik, Mohamed
    Khaldoun, Mohammed
    Sabir, Essaid
    2023 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2023, : 1690 - 1696
  • [9] Real-Time Farm Surveillance Using IoT and YOLOv8 for Animal Intrusion Detection
    Delwar, Tahesin Samira
    Mukhopadhyay, Sayak
    Kumar, Akshay
    Singh, Mangal
    Lee, Yang-won
    Ryu, Jee-Youl
    Hosen, A. S. M. Sanwar
    FUTURE INTERNET, 2025, 17 (02)
  • [10] Real-Time Obstacle Detection with YOLOv8 in a WSN Using UAV Aerial Photography
    Rahman, Shakila
    Rony, Jahid Hasan
    Uddin, Jia
    Samad, Md Abdus
    JOURNAL OF IMAGING, 2023, 9 (10)