Polytime embedding of intuitionistic modal logics into their one-variable fragments

被引:0
|
作者
Rybakov, Mikhail [1 ]
Shkatov, Dmitry [2 ]
机构
[1] MIPT & HSE Univ, Higher Sch Modern Math, Moscow 115184, Russia
[2] Univ Witwatersrand, Sch Comp Sci & Appl Math, ZA-2050 Johannesburg, Wits, South Africa
关键词
intuitionistic modal logic; polynomial-time embedding; computational complexity; satisfiability problem; validity problem; COMPLEXITY;
D O I
10.1093/logcom/exae077
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that propositional intuitionistic modal logics $\textbf{FS}$ (also known as $\textbf{IK}$) and $\textbf{MIPC}$ (also known as $\textbf{IS5}$) are polynomial-time embeddable into, and hence polynomial-time equivalent to, their own one-variable fragments. It follows that the one-variable fragment of $\textbf{MIPC}$ is coNEXPTIME-complete. The method of proof applies to a wide range of intuitionistic modal logics characterizable by two-dimensional frames, among them intuitionistic analogues of such classical modal logics as $\textbf{K4}$ and $\textbf{S4}$.
引用
收藏
页数:18
相关论文
共 50 条
  • [1] On One-Variable Fragments of Modal μ-Calculus
    Pacheco, Leonardo
    Li, Wenjuan
    Tanaka, Kazuyuki
    COMPUTABILITY THEORY AND FOUNDATIONS OF MATHEMATICS, CTFM 2019, 2022, : 17 - 45
  • [2] ONE-VARIABLE FRAGMENTS OF FIRST-ORDER LOGICS
    Cintula, Petr
    Metcalfe, George
    Tokuda, Naomi
    BULLETIN OF SYMBOLIC LOGIC, 2024, 30 (02) : 253 - 278
  • [3] One-variable fragments of intermediate logics over linear frames
    Caicedo, Xavier
    Metcalfe, George
    Rodriguez, Ricardo
    Tuyt, Olim
    INFORMATION AND COMPUTATION, 2022, 287
  • [4] Modal Intuitionistic Logics as Dialgebraic Logics
    de Groot, Jim
    Pattinson, Dirk
    PROCEEDINGS OF THE 35TH ANNUAL ACM/IEEE SYMPOSIUM ON LOGIC IN COMPUTER SCIENCE (LICS 2020), 2020, : 355 - 369
  • [5] On Graphs for Intuitionistic Modal Logics
    Veloso, Paulo A. S.
    Veloso, Sheila R. M.
    ELECTRONIC NOTES IN THEORETICAL COMPUTER SCIENCE, 2016, 323 (215-233) : 215 - 233
  • [6] INTUITIONISTIC MODAL-LOGICS
    FISCHERSERVI, G
    JOURNAL OF SYMBOLIC LOGIC, 1984, 49 (02) : 690 - 690
  • [7] Undecidable Propositional Bimodal Logics and One-Variable First-Order Linear Temporal Logics with Counting
    Hampson, Christopher
    Kurucz, Agi
    ACM TRANSACTIONS ON COMPUTATIONAL LOGIC, 2015, 16 (03)
  • [8] One-Step Modal Logics, Intuitionistic and Classical, Part 1
    Harold T. Hodes
    Journal of Philosophical Logic, 2021, 50 : 837 - 872
  • [9] One-Step Modal Logics, Intuitionistic and Classical, Part 1
    Hodes, Harold T.
    JOURNAL OF PHILOSOPHICAL LOGIC, 2021, 50 (05) : 837 - 872
  • [10] Local Intuitionistic Modal Logics and Their Calculi
    Balbiani, Philippe
    Gao, Han
    Gencer, Cigdem
    Olivetti, Nicola
    AUTOMATED REASONING, IJCAR 2024, PT II, 2024, 14740 : 78 - 96