SLIPP: A Space-Efficient Learned Index for String Keys

被引:0
|
作者
Zhou, Weihong [1 ]
Yang, Shiyu [1 ]
机构
[1] Guangzhou Univ, Guangzhou, Peoples R China
基金
国家重点研发计划;
关键词
In-memory; Learned index; String;
D O I
10.1145/3686540.3686550
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Efficient indexing structures are crucial for high-performance data access in in-memory data management systems. Traditional indexing methods, while effective in specific scenarios, often struggle with variable-length string keys and range queries. This paper presents the String Learned Index with Precise Positions (SLIPP), an enhancement of the Learned Index with Precise Positions (LIPP) that incorporates trie-based methodologies. By integrating trie characteristics with the predictive capabilities of a simple univariate linear regression model, SLIPP aims to optimize the handling of string keys, significantly reducing memory usage and improving lookup speeds. Our evaluation, utilizing the TLI experimental framework, demonstrates SLIPP's effectiveness in rapid lookups and highlights its adaptability to datasets featuring long common prefixes. Although SLIPP encounters challenges with intricate data distributions, its approach to string key indexing, building on the foundation of LIPP and incorporating trie features, offers a promising avenue for enhancing database systems to manage large datasets more efficiently and with lower space requirements.
引用
收藏
页码:69 / 77
页数:9
相关论文
共 50 条
  • [1] A Framework for Space-Efficient String Kernels
    Djamal Belazzougui
    Fabio Cunial
    Algorithmica, 2017, 79 : 857 - 883
  • [2] A Framework for Space-Efficient String Kernels
    Belazzougui, Djamal
    Cunial, Fabio
    ALGORITHMICA, 2017, 79 (03) : 857 - 883
  • [3] Space-efficient multiple string matching automata
    Zhang, M. (zhangmeng@jlu.edu.cn), 1600, Inderscience Publishers (05):
  • [4] An Error-Bounded Space-Efficient Hybrid Learned Index with High Lookup Performance
    Ding, Yuquan
    Zhao, Xujian
    Jin, Peiquan
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, DEXA 2022, PT II, 2022, 13427 : 216 - 228
  • [5] Space-Efficient String Mining under Frequency Constraints
    Fischer, Johannes
    Makinen, Veli
    Valimaki, Niko
    ICDM 2008: EIGHTH IEEE INTERNATIONAL CONFERENCE ON DATA MINING, PROCEEDINGS, 2008, : 193 - +
  • [6] HashTrie: A space-efficient multiple string matching algorithm
    2015, Editorial Board of Journal on Communications (36):
  • [7] Fast String Matching with Space-efficient Word Graphs
    Yata, Susumu
    Morita, Kazuhiro
    Fuketa, Masao
    Aoe, Jun-ichi
    IIT: 2008 INTERNATIONAL CONFERENCE ON INNOVATIONS IN INFORMATION TECHNOLOGY, 2008, : 484 - 488
  • [8] Space-efficient computation of parallel approximate string matching
    Muhammad Umair Sadiq
    Muhammad Murtaza Yousaf
    The Journal of Supercomputing, 2023, 79 : 9093 - 9126
  • [9] Space-efficient Feature Maps for String Alignment Kernels
    Tabei, Yasuo
    Yamanishi, Yoshihiro
    Pagh, Rasmus
    2019 19TH IEEE INTERNATIONAL CONFERENCE ON DATA MINING (ICDM 2019), 2019, : 1312 - 1317
  • [10] Space-Efficient Feature Maps for String Alignment Kernels
    Tabei, Yasuo
    Yamanishi, Yoshihiro
    Pagh, Rasmus
    DATA SCIENCE AND ENGINEERING, 2020, 5 (02) : 168 - 179