Marrying Top-k with Skyline Queries: Operators with Relaxed Preference Input and Controllable Output Size

被引:0
|
作者
Mouratidis, Kyriakos [1 ]
Li, Keming [2 ]
Tang, Bo [3 ,4 ]
机构
[1] Singapore Management Univ, Sch Comp & Informat Syst, Singapore, Singapore
[2] Univ Calif Irvine, Sch Informat & Comp Sci, Irvine, CA 92697 USA
[3] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen, Peoples R China
[4] Southern Univ Sci & Technol, Res Inst Trustworthy Autonomous Syst, Shenzhen, Peoples R China
来源
ACM TRANSACTIONS ON DATABASE SYSTEMS | 2025年 / 50卷 / 01期
基金
美国国家科学基金会;
关键词
Top-k query; skyline; multi-dimensional datasets; ALGORITHMS; RANKING; OPTIMIZATION; COMPUTATION; GAIN;
D O I
10.1145/3705726
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The two paradigms to identify records of preference in a multi-objective setting rely either on dominance (e.g., the skyline operator) or on a utility function defined over the records' attributes (typically using a top-k query). Despite their proliferation, each has its own palpable drawbacks. Motivated by these drawbacks, we identify three hard requirements for practical decision support, namely, personalization, controllable output size, and flexibility in preference specification. With these requirements as a guide, we combine elements from both paradigms and propose two new operators, ORD and ORU. We present a suite of algorithms for their efficient processing, dedicating more technical effort to ORU, whose nature is inherently more challenging. Specifically, besides a sophisticated algorithm for ORD, we describe two exact methods for ORU and one approximate. We perform a qualitative study to demonstrate how our operators work and evaluate the performance of our algorithms against adaptations of previous work that mimic their output. CCS Concepts: center dot Information systems -> Top-k retrieval in databases;
引用
收藏
页数:37
相关论文
共 35 条
  • [1] Marrying Top-k with Skyline Queries: Relaxing the Preference Input while Producing Output of Controllable Size
    Mouratidis, Kyriakos
    Li, Keming
    Tang, Bo
    SIGMOD '21: PROCEEDINGS OF THE 2021 INTERNATIONAL CONFERENCE ON MANAGEMENT OF DATA, 2021, : 1317 - 1330
  • [2] Top-k Combinatorial Skyline Queries
    Su, I-Fang
    Chung, Yu-Chi
    Lee, Chiang
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT II, PROCEEDINGS, 2010, 5982 : 79 - +
  • [3] Top-k Manhattan Spatial Skyline Queries
    Son, Wanbin
    Stehn, Fabian
    Knauer, Christian
    Ahn, Hee-Kap
    ALGORITHMS AND COMPUTATION, WALCOM 2014, 2014, 8344 : 22 - 33
  • [4] Efficient evaluation of Top-k Skyline queries
    Departamento de Computación, Universidad Simón Bolívar, Sartenejas-Baruta, Venezuela
    Revista Tecnica de la Facultad de Ingenieria Universidad del Zulia, 2009, 2 (170-179):
  • [5] Preference-Based Top-k Representative Skyline Queries on Uncertain Databases
    Ha Thanh Huynh Nguyen
    Cao, Jinli
    ADVANCES IN KNOWLEDGE DISCOVERY AND DATA MINING, PART II, 2015, 9078 : 280 - 292
  • [6] Top-k Dominating Queries on Skyline Groups
    Zhu, Haoyang
    Li, Xiaoyong
    Liu, Qiang
    Xu, Zichen
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2020, 32 (07) : 1431 - 1444
  • [7] Top-k Manhattan spatial skyline queries
    Son, Wanbin
    Stehn, Fabian
    Knauer, Christian
    Ahn, Hee-Kap
    INFORMATION PROCESSING LETTERS, 2017, 123 : 27 - 35
  • [8] Efficient evaluation of Top-k Skyline queries
    Goncalves, Marlene
    Vidal, Maria-Esther
    REVISTA TECNICA DE LA FACULTAD DE INGENIERIA UNIVERSIDAD DEL ZULIA, 2009, 32 (02): : 170 - 179
  • [9] Reaching the Top of the Skyline: An Efficient Indexed Algorithm for Top-k Skyline Queries
    Goncalves, Marlene
    Vidal, Maria-Esther
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2009, 5690 : 471 - 485
  • [10] Top-k spatial preference queries
    Yiu, Man Lung
    Dai, Xiangyuan
    Mamoulis, Nikos
    Vaitis, Michail
    2007 IEEE 23RD INTERNATIONAL CONFERENCE ON DATA ENGINEERING, VOLS 1-3, 2007, : 1051 - +