Constructing Asymmetric Cu Catalytic Sites for CO2 Electroreduction with Higher Selectivity to C2 Products

被引:0
|
作者
Meng, Fanfei [1 ,2 ]
Yao, Xiaohui [2 ]
He, Jingting [1 ,2 ]
Gu, Jianxia [2 ]
Li, Wei [2 ]
Sun, Chunyi [2 ]
Wang, Xinlong [2 ]
Su, Zhongmin [1 ]
机构
[1] Changchun Univ Sci & Technol, Jilin Prov Sci & Technol Innovat Ctr Opt Mat & Che, Sch Chem & Environm Engn, 7089 Satellite Rd, Changchun 130022, Jilin, Peoples R China
[2] Northeast Normal Univ, Key Lab Polyoxometalate Sci, Dept Chem, Minist Educ, 5268 Renmin St, Changchun 130024, Jilin, Peoples R China
关键词
Asymmetric; Coordination environment; CO(2)reduction; Metal-organic frameworks; METAL-ORGANIC FRAMEWORK; COORDINATION POLYMERS; DUAL SITES; COPPER;
D O I
10.1002/cssc.202402120
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The design of catalytic sites with tunable properties is considered a promising approach to advance the reduction of CO2 into valuable fuels and chemicals, as well as to achieve carbon neutrality. However, significant challenges remain in precisely constructing catalytic sites to adjust target reduction products. In this study, catalysts were derived from metal-organic frameworks (MOFs) with different coordination environments during the electrochemical CO2 reduction reaction (eCO(2)RR), referred to as Cu-N2O2 and Cu-N2O3, respectively. Higher selectivity towards the production of C-2 products was exhibited by the Cu-N2O2-derived catalysts, characterized by asymmetric catalytic centers of Cu-0 and Cu+, compared to the Cu-N2O3-derived catalysts, which contained only symmetric catalytic centers of Cu-0 sites. This enhanced selectivity is attributed to the synergistic interaction between the Cu-0 and Cu+ sites, facilitating the multi-electron transfer process and improving the activation of CO2. This study explores how the coordination environment affects the catalytic performance of catalysts derived from MOFs, providing valuable insights for the development of more effective catalysts aimed at CO2 reduction.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] Interface-Enhanced Catalytic Selectivity on the C2 Products of CO2 Electroreduction
    Li, Zhen
    Yang, Yao
    Yin, Zhenglei
    Wei, Xing
    Peng, Hanqing
    Lyu, Kangjie
    Wei, Fengyuan
    Xiao, Li
    Wang, Gongwei
    Abruna, Hector D.
    Lu, Juntao
    Zhuang, Lin
    ACS CATALYSIS, 2021, 11 (05) : 2473 - 2482
  • [2] Asymmetric Cu Sites for Enhanced CO2 Electroreduction to C2+ Products
    Guo, Weiwei
    Tan, Xingxing
    Jia, Shunhan
    Liu, Shoujie
    Song, Xinning
    Ma, Xiaodong
    Wu, Limin
    Zheng, Lirong
    Sun, Xiaofu
    Han, Buxing
    CCS CHEMISTRY, 2024, 6 (05): : 1231 - 1239
  • [3] Asymmetric Copper-Sulphur Sites Promote C-C Coupling for Selective CO2 Electroreduction to C2 Products
    Liang, Liang
    Yang, Li
    Heine, Thomas
    Arinchtein, Aleks
    Wang, Xingli
    Huebner, Jessica
    Schmidt, Johannes
    Thomas, Arne
    Strasser, Peter
    ADVANCED ENERGY MATERIALS, 2024, 14 (12)
  • [4] Stabilizing Cu0-Cu+ sites by Pb-doping for highly efficient CO2 electroreduction to C2 products
    Ma, Xiaodong
    Song, Xinning
    Zhang, Libing
    Wu, Limin
    Feng, Jiaqi
    Jia, Shunhan
    Tan, Xingxing
    Xu, Liang
    Sun, Xiaofu
    Han, Buxing
    GREEN CHEMISTRY, 2023, 25 (19) : 7635 - 7641
  • [5] Directing the selectivity of CO2 electroreduction to target C2 products via non-metal doping on Cu surfaces
    Zhi, Xing
    Jiao, Yan
    Zheng, Yao
    Davey, Kenneth
    Qiao, Shi-Zhang
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (10) : 6345 - 6351
  • [6] Eu-Doped Cu2O for Tailored Cu+/Cu0 sites and enhanced C2 selectivity in CO2 electroreduction
    Chen, Wenyi
    Li, Mengjia
    Cheng, Yinlong
    Gao, Feng
    Pan, Chunhong
    Wang, Huimin
    Mao, Jinman
    Wang, Biao
    Huang, Feng
    APPLIED SURFACE SCIENCE, 2025, 690
  • [7] Rational design strategies of Cu-based electrocatalysts for CO2 electroreduction to C2 products
    Liu, Shuo
    Zhang, Baoshan
    Zhang, Lihong
    Sun, Jie
    JOURNAL OF ENERGY CHEMISTRY, 2022, 71 : 63 - 82
  • [8] Tuning the intermediate reaction barriers by a CuPd catalyst to improve the selectivity of CO2 electroreduction to C2 products
    Zhu, Li
    Lin, Yiyang
    Liu, Kang
    Cortes, Emiliano
    Li, Hongmei
    Hu, Junhua
    Yamaguchi, Akira
    Liu, Xiaoliang
    Miyauchi, Masahiro
    Fu, Junwei
    Liu, Min
    CHINESE JOURNAL OF CATALYSIS, 2021, 42 (09) : 1500 - 1508
  • [9] Rational design strategies of Cu-based electrocatalysts for CO2 electroreduction to C2 products
    Shuo Liu
    Baoshan Zhang
    Lihong Zhang
    Jie Sun
    Journal of Energy Chemistry , 2022, (08) : 63 - 82
  • [10] Selective Electroreduction of CO2 to C2 Products over Cu3N-Derived Cu Nanowires
    Mi, Yuying
    Shen, Sibo
    Peng, Xianyun
    Bao, Haihong
    Liu, Xijun
    Luo, Jun
    CHEMELECTROCHEM, 2019, 6 (09) : 2393 - 2397