Efficient online sensitivity analysis for the injective bottleneck path problem

被引:0
|
作者
Kaymakov, Kirill V. [1 ]
Malyshev, Dmitry S. [2 ]
机构
[1] Coleman Tech LLC, 40 Mira Ave, Moscow 129090, Russia
[2] Natl Res Univ Higher Sch Econ, Lab Algorithms & Technol Networks Anal, 136 Rodionova Str, Nizhnii Novgorod 603093, Russia
关键词
Bottleneck path problem; Sensitivity analysis; Efficient algorithm; INDEPENDENT SET PROBLEM; MINIMUM SPANNING-TREES; SHORTEST-PATH; BOUND ALGORITHMS; MIN-MAX; TOLERANCES; COMPUTATION;
D O I
10.1007/s11590-024-02170-5
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The tolerance of an element of a combinatorial optimization problem with respect to a given optimal solution is the maximum change, i.e., decrease or increase, of its cost, such that this solution remains optimal. The bottleneck path problem, for given an edge-capacitated graph, a source, and a target, is to find the max\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max $$\end{document}-min\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\min $$\end{document} value of edge capacities on paths between the source and the target. For any given sample of this problem with n vertices and m edges, there is known the Ramaswamy-Orlin-Chakravarty's algorithm to compute an optimal path and all tolerances with respect to it in O(m+nlogn)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m+n\log n)$$\end{document} time. In this note, for any in advance given (n, m)-network with distinct edge capacities and k source-target pairs, we propose an O(m alpha(m,n)+min((n+k)logn,km))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\Big (m \alpha (m,n)+\min \big ((n+k)\log n,km\big )\Big )$$\end{document}-time preprocessing, where alpha(<middle dot>,<middle dot>)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha (\cdot ,\cdot )$$\end{document} is the inverse Ackermann function, to find in O(k) time all 2k tolerances of an arbitrary edge with respect to some maxmin\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\max \min $$\end{document} paths between the paired sources and targets. To find both tolerances of all edges with respect to those optimal paths, it asymptotically improves, for some n, m, k, the Ramaswamy-Orlin-Chakravarty's complexity O(k(m+nlogn))\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O\big (k(m+n\log n)\big )$$\end{document} up to O(m alpha(n,m)+km)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(m\alpha (n,m)+km)$$\end{document}.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] The Euclidean Bottleneck Steiner Path Problem
    Abu-Affash, A. Karim
    Carmi, Paz
    Katzi, Matthew J.
    Segal, Michael
    COMPUTATIONAL GEOMETRY (SCG 11), 2011, : 440 - 447
  • [2] Efficient computation of tolerances in the sensitivity analysis of combinatorial bottleneck problems
    Turkensteen, Marcel
    Jäger, Gerold
    Theoretical Computer Science, 2022, 937 : 1 - 21
  • [3] Efficient computation of tolerances in the sensitivity analysis of combinatorial bottleneck problems
    Turkensteen, Marcel
    Jager, Gerold
    THEORETICAL COMPUTER SCIENCE, 2022, 937 : 1 - 21
  • [4] Sensitivity analysis for fuzzy shortest path problem
    Starostina, T
    Dempe, S
    Computational Intelligence, Theory and Applications, 2005, : 695 - 702
  • [5] A Distributed Augmenting Path Approach for the Bottleneck Assignment Problem
    Khoo, Mitchell
    Wood, Tony A.
    Manzie, Chris
    Shames, Iman
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2024, 69 (02) : 1210 - 1217
  • [6] On efficient algorithms for bottleneck path problems with many sources
    Kaymakov, Kirill V.
    Malyshev, Dmitry S.
    OPTIMIZATION LETTERS, 2024, 18 (05) : 1273 - 1283
  • [7] The Online Replacement Path Problem
    Adjiashvili, David
    Oriolo, Gianpaolo
    Senatore, Marco
    ALGORITHMS - ESA 2013, 2013, 8125 : 1 - 12
  • [8] Sensitivity analysis for bottleneck assignment problems
    Michael, Elad
    Wood, Tony A.
    Manzie, Chris
    Shames, Iman
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2022, 303 (01) : 159 - 167
  • [9] Sensitivity Analysis of a Transit Bottleneck Model
    Leurent, Fabien
    Pivano, Cyril
    21ST EURO WORKING GROUP ON TRANSPORTATION MEETING (EWGT 2018), 2019, 37 : 433 - 440
  • [10] An efficient heuristic algorithm for the bottleneck traveling salesman problem
    Ramakrishnan R.
    Sharma P.
    Punnen A.P.
    OPSEARCH, 2009, 46 (3) : 275 - 288