Distinct explanations underlie gene-environment interactions in the UK Biobank

被引:0
|
作者
Durvasula, Arun [1 ,2 ,3 ,4 ]
Price, Alkes L. [4 ,5 ,6 ]
机构
[1] Univ Southern Calif, Ctr Genet Epidemiol, Keck Sch Med, Dept Populat & Publ Hlth Sci, Los Angeles, CA 90007 USA
[2] Harvard Univ, Sch Med, Dept Genet, Cambridge, MA 02138 USA
[3] Harvard Univ, Dept Human Evolutionary Biol, Cambridge, MA 02138 USA
[4] Broad Inst MIT & Harvard, Program Med & Populat Genet, Cambridge, MA 02142 USA
[5] Harvard TH Chan Sch Publ Hlth, Dept Epidemiol, Boston, MA 02138 USA
[6] Harvard TH Chan Sch Publ Hlth, Dept Biostat, Boston, MA 02115 USA
基金
美国国家卫生研究院;
关键词
GENOME-WIDE ASSOCIATION; SEX-DIFFERENCES; PHENOTYPIC VARIABILITY; SUSCEPTIBILITY LOCI; HERITABILITY; DISEASES; EFFICIENT; SCHIZOPHRENIA; PROPORTION; GENOTYPE;
D O I
10.1016/j.ajhg.2025.01.014
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
The role of gene-environment (GxE) interaction in disease and complex trait architectures is widely hypothesized but currently unknown. Here, we apply three statistical approaches to quantify and distinguish three different types of GxE interaction for a given trait and environmental (E) variable. First, we detect locus-specific GxE interaction by testing for genetic correlation (r(g)) < 1 across E bins. Second, we detect genome-wide effects of the E variable on genetic variance by leveraging polygenic risk scores (PRSs) to test for significant PRSxE in a regression of phenotypes on PRS, E, and PRSxE, together with differences in SNP heritability across E bins. Third, we detect genome-wide proportional amplification of genetic and environmental effects as a function of the E variable by testing for significant PRSxE with no differences in SNP heritability across E bins. We applied our framework to 33 UK Biobank traits (25 quantitative traits and 8 diseases; average n = 325,000) and 10 E variables spanning lifestyle, diet, and other environmental exposures. First, we identified 19 trait-E pairs with r(g) significantly <1 (false discovery rate < 5%); 28 trait-E pairs with significant PRSxE and significant SNP heritability differences across E bins; and 15 trait-E pairs with significant PRSxE but no SNP heritability differences across E bins. Across the three scenarios, eight of the trait-E pairs involved disease traits, whose interpretation is complicated by scale effects. Analyses using biological sex as the E variable produced additional significant findings in each of these scenarios. Overall, we infer a significant contribution of GxE and GxSex effects to complex trait variance.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Gene-environment interactions - The BioBank UK study
    Wright A.F.
    Carothers A.D.
    Campbell H.
    The Pharmacogenomics Journal, 2002, 2 (2) : 75 - 82
  • [2] Gene-Environment Interactions for Type 2 Diabetes in UK Biobank
    Nag, Abhishek
    Mahajan, Anubha
    McCarthy, Mark
    DIABETES, 2019, 68
  • [3] Gene-environment interactions in multiple sclerosis: a uk biobank study
    Jacobs, B.
    Noyce, A.
    Bestwick, J.
    Belete, D.
    Giovannoni, G.
    Dobson, R.
    MULTIPLE SCLEROSIS JOURNAL, 2020, 26 (3_SUPPL) : 367 - 367
  • [4] Gene-Environment Interactions in Multiple Sclerosis A UK Biobank Study
    Jacobs, Benjamin Meir
    Noyce, Alastair J.
    Bestwick, Jonathan
    Belete, Daniel
    Giovannoni, Gavin
    Dobson, Ruth
    NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION, 2021, 8 (04): : E1007
  • [5] Parkinson's disease determinants, prediction and gene-environment interactions in the UK Biobank
    Jacobs, Benjamin Meir
    Belete, Daniel
    Bestwick, Jonathan
    Blauwendraat, Cornelis
    Bandres-Ciga, Sara
    Heilbron, Karl
    Dobson, Ruth
    Nalls, Mike A.
    Singleton, Andrew
    Hardy, John
    Giovannoni, Gavin
    Lees, Andrew John
    Schrag, Anette-Eleonore
    Noyce, Alastair J.
    JOURNAL OF NEUROLOGY NEUROSURGERY AND PSYCHIATRY, 2020, 91 (10): : 1046 - 1054
  • [6] Parkinson's disease determinants, prediction and gene-environment interactions in the UK Biobank
    Belete, D.
    Jacobs, B.
    Bestwick, J.
    Blauwendraat, C.
    Bandres-Ciga, S.
    Heilbron, K.
    Dobson, R.
    Nalls, M.
    Singleton, A.
    Hardy, J.
    Giovannoni, G.
    Lees, A.
    Schrag, A.
    Noyce, A.
    MOVEMENT DISORDERS, 2020, 35 : S74 - S74
  • [7] Systematic discovery of gene-environment interactions underlying the human plasma proteome in UK Biobank
    Hillary, Robert F.
    Gadd, Danni A.
    Kuncheva, Zhana
    Mangelis, Tasos
    Lin, Tinchi
    Ferber, Kyle
    Mclaughlin, Helen
    Runz, Heiko
    Marshall, Eric
    Marioni, Riccardo E.
    Foley, Christopher N.
    Sun, Benjamin B.
    NATURE COMMUNICATIONS, 2024, 15 (01)
  • [8] GENE-ENVIRONMENT INTERACTIONS UNDERLIE PRETERM BIRTH.
    Cha, J.
    Bartos, A.
    Bradshaw, H.
    Hirota, Y.
    Dey, S. K.
    FERTILITY AND STERILITY, 2013, 100 (03) : S32 - S32
  • [9] Physical Activity, APOE Genotype, and Cognitive Decline: Exploring Gene-Environment Interactions in the UK Biobank
    Folley, Stephanie
    Zhou, Ang
    Llewellyn, David J.
    Hyppoenen, Elina
    JOURNAL OF ALZHEIMERS DISEASE, 2019, 71 (03) : 741 - 750
  • [10] Childhood Adoption and Mental Health in Adulthood: The Role of Gene-Environment Correlations and Interactions in the UK Biobank
    Lehto, Kelli
    Hagg, Sara
    Lu, Donghao
    Karlsson, Robert
    Pedersen, Nancy L.
    Mosing, Miriam A.
    BIOLOGICAL PSYCHIATRY, 2020, 87 (08) : 708 - 716