Beurling type invariant subspaces on Hardy and Bergman spaces of the unit ball or polydisk

被引:0
|
作者
Gu, Caixing [1 ]
Luo, Shuaibing [2 ]
Ma, Pan [3 ]
机构
[1] Calif Polytech State Univ San Luis Obispo, Dept Math, San Luis Obispo, CA 93407 USA
[2] Hunan Univ, Sch Math, Changsha 410082, Peoples R China
[3] Cent South Univ, Sch Math & Stat, HNP LAMA, Changsha 410083, Peoples R China
关键词
Invariant subspace; Beurling's theorem; reproducing kernel Hilbert space on unit ball; polydisk or polyball; doubly commuting; REPRODUCING KERNELS; WANDERING SUBSPACES; THEOREM; SUBMODULES; DILATIONS; MODULE; MODELS;
D O I
10.4153/S0008439524000535
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
McCullough and Trent generalize Beurling-Lax-Halmos invariant subspace theorem for the shift on Hardy space of the unit disk to the multi-shift on Drury-Arveson space of the unit ball by representing an invariant subspace of the multi-shift as the range of a multiplication operator that is a partial isometry. By using their method, we obtain similar representations for a class of invariant subspaces of the multi-shifts on Hardy and Bergman spaces of the unit ball or polydisk. Our results are surprisingly general and include several important classes of invariant subspaces on the unit ball or polydisk.
引用
收藏
页码:232 / 245
页数:14
相关论文
共 50 条