Exploring the use of low-temperature atmospheric plasma polymerization for the reduction of parasitic currents in type-II superlattice devices

被引:0
|
作者
Gillies, R. [1 ]
Mckay, K. [1 ]
Asku, K. [1 ,3 ]
Srivastava, V [2 ]
Kersia, M. [2 ]
Sandall, I [1 ]
机构
[1] Univ Liverpool, Dept Elect Engn & Elect, Liverpool L69 3GJ, England
[2] Cardiff Univ, Sch Phys & Astron, Cardiff CF24 3AA, Wales
[3] Natl Tsing Hua Univ, Hsinchu, Taiwan
关键词
LTAP; T2SL; polymerisation; passivation; OES; FTIR-ATR; semiconductor; PRESSURE;
D O I
10.1088/1361-6587/ada1fa
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Type-II superlattice (T2SL) devices have the potential to be the new generation of semiconductor-based devices, however fabrication of these devices leads to surface defects that can create surface leakage channels. Passivation methods that are typically used in traditional semiconductors have proved unsuccessful. In this paper we present the initial findings of a low-temperature atmospheric pressure plasma polymerisation process capable of removing the unwanted oxide layers and depositing a thin layer of polymer to protect the surface. We examine the effect of monomer flow rate on the plasma optical emission and electrical characteristics and investigate the deposition chemistry. Finally, we demonstrate the effectiveness of the plasma treatment on T2SL devices and underpin the potential for this technique. These results were presented at the 50th IOP Plasma Physics Conference, April 2024.
引用
收藏
页数:6
相关论文
共 21 条
  • [1] Use of low-temperature plasma in the polymerization of siloxane.
    Semer, MJ
    Hu, TI
    O'Connor, PJ
    Fawcett, TG
    Wallin, SA
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1999, 218 : U379 - U379
  • [2] Fast low-temperature plasma reduction of monolayer graphene oxide at atmospheric pressure
    Bodik, Michal
    Zahoranova, Anna
    Micusik, Matej
    Bugarova, Nikola
    Spitalsky, Zdenko
    Omastova, Maria
    Majkova, Eva
    Jergel, Matej
    Siffalovic, Peter
    NANOTECHNOLOGY, 2017, 28 (14)
  • [3] An Arrowhead-Type Microwave Low-Temperature Plasma Jet at Atmospheric Pressure
    Wang, Qianyu
    Huang, Kama
    IEEE Transactions on Plasma Science, 2024, 52 (12) : 5533 - 5537
  • [4] Low-temperature specific heat of an extreme type-II superconductor at high magnetic fields
    Carr, AL
    Trafton, JJ
    Dukan, S
    Tesanovic, Z
    PHYSICAL REVIEW B, 2003, 68 (17)
  • [5] VARIABLE DEGREES OF LOW-TEMPERATURE ALTERATION IN TYPE-II CHONDRULES IN THE CR CARBONACEOUS CHONDRITES
    Schrader, D. L.
    Lauretta, D. S.
    Connolly, H. C., Jr.
    METEORITICS & PLANETARY SCIENCE, 2009, 44 : A187 - A187
  • [6] LOW-TEMPERATURE IRRADIATION STUDY OF FLUX-LINE PINNING IN TYPE-II SUPERCONDUCTORS
    KERCHNER, HR
    CHRISTEN, DK
    KLABUNDE, CE
    SEKULA, ST
    COLTMAN, RR
    PHYSICAL REVIEW B, 1983, 27 (09): : 5467 - 5478
  • [7] LOW-TEMPERATURE TRANSPORT OF EXCITONS IN TYPE-II GAAS/ALAS QUANTUM-WELLS
    DZYUBENKO, AB
    BAUER, GEW
    PHYSICAL REVIEW B, 1995, 51 (20): : 14524 - 14531
  • [8] Low-temperature renormalization-group study of uniformly frustrated models for type-II superconductors
    Jug, G
    Shalaev, BN
    PHYSICAL REVIEW B, 1998, 58 (18) : 12404 - 12410
  • [9] LOW-TEMPERATURE ASYMPTOTIC FLUCTUATIONS IN THE CRITICAL REGION OF A TYPE-II SUPERCONDUCTOR NEAR HC2
    RUGGERI, GJ
    PHYSICAL REVIEW B, 1979, 20 (09): : 3626 - 3630
  • [10] Quasi-3-dimensional simulations and experimental validation of surface leakage currents in high operating temperature type-II superlattice infrared detectors
    Ramos, D.
    Delmas, M.
    Ivanov, R.
    Evans, D.
    Zurauskaite, L.
    Almqvist, S.
    Becanovic, S.
    Hoglund, L.
    Costard, E.
    Hellstrom, P. E.
    JOURNAL OF APPLIED PHYSICS, 2022, 132 (20)