Tail classification using non-linear regression on model plots

被引:0
|
作者
Beirlant, Jan [1 ]
Bladt, Martin [2 ]
机构
[1] Katholieke Univ Leuven, Dept Math, Celestijnenlaan 200B, B-3001 Leuven, Belgium
[2] Univ Copenhagen, Dept Math Sci, Univ Pk 5, DK-2100 Copenhagen, Denmark
关键词
Keywords; Classification; Testing; Tail regimes; Probability plots; Quantile plots; Weather data; WEIBULL; DISCRIMINATION;
D O I
10.1007/s10687-025-00506-7
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Selecting an appropriate statistical model is a crucial initial step in various statistical analyses, particularly when estimating extreme values. Empirical plots, such as Pareto, log-normal, and Weibull plots, serve as valuable tools for visualising the data and identifying patterns that can suggest a suitable model. Focusing on probability plots, we apply non-linear regression so as to enable the visualisation of extreme data in terms of their compatibility with widely accepted tail models. We further develop asymptotic theory for the non-linearity parameter, which, in turn, allows us to formalise classification procedures to distinguish between specific sets of tail models. The finite sample behaviour is investigated with simulations and illustrated on real data comprised of weekly maxima of hourly precipitation measures at different weather stations in France.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] Classification in Non-linear Survival Models Using Cox Regression and Decision Tree
    Mokarram R.
    Emadi M.
    Annals of Data Science, 2017, 4 (3) : 329 - 340
  • [2] ACE - A NON-LINEAR REGRESSION-MODEL
    FRANK, IE
    LANTERI, S
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1988, 3 (04) : 301 - 313
  • [3] ANALYZING NON-LINEAR SCATCHARD PLOTS
    LIGHT, KE
    SCIENCE, 1984, 223 (4631) : 76 - 77
  • [4] NON-LINEAR PROGRAMMING AND NON-LINEAR REGRESSION PROCEDURES
    EDWARDS, C
    JOURNAL OF FARM ECONOMICS, 1962, 44 (01): : 100 - 114
  • [5] Radar modulation classification using time-frequency representation and non-linear regression
    De Luigi, C
    Arquès, PY
    Lopez, JM
    Moreau, E
    RADAR PROCESSING, TECHNOLOGY, AND APPLICATIONS IV, 1999, 3810 : 62 - 69
  • [6] A subclass model for non-linear pattern classification
    Zhu, QM
    Cai, Y
    PATTERN RECOGNITION LETTERS, 1998, 19 (01) : 19 - 29
  • [7] MULTIOBJECTIVE MODEL SELECTION FOR NON-LINEAR REGRESSION TECHNIQUES
    Pasolli, Luca
    Notarnicola, Claudia
    Bruzzone, Lorenzo
    2010 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2010, : 268 - 271
  • [8] Aboveground biomass and carbon stocks modelling using non-linear regression model
    Zaki, Nurul Ain Mohd
    Abd Latif, Zulkiflee
    Suratman, Mohd Nazip
    Zainal, Mohd Zainee
    8TH IGRSM INTERNATIONAL CONFERENCE AND EXHIBITION ON GEOSPATIAL & REMOTE SENSING (IGRSM 2016), 2016, 37
  • [9] A non-linear regression model for inertia identification using synchrophasors and Big Data
    Quiroz, Juan
    Soto, Ismael
    Toledo-Mercado, Esteban
    Chavez, Hector
    Zamorano-Illanes, Raul
    Pereira-Mendoza, Jonathan
    2021 IEEE IFAC INTERNATIONAL CONFERENCE ON AUTOMATION/XXIV CONGRESS OF THE CHILEAN ASSOCIATION OF AUTOMATIC CONTROL (IEEE IFAC ICA - ACCA2021), 2021,
  • [10] Evaluation of concrete fatigue measurement using standard and non-linear regression model
    Seitl, Stanislav
    Simonova, Hana
    Kersner, Zbynek
    Fernandez-Canteli, Alfonso
    FRONTIERS OF MANUFACTURING AND DESIGN SCIENCE II, PTS 1-6, 2012, 121-126 : 2726 - +