Hypergraph Anti-Ramsey Theorems

被引:0
|
作者
Liu, Xizhi [1 ,2 ]
Song, Jialei [3 ,4 ]
机构
[1] Univ Warwick, Math Inst, Coventry, England
[2] Univ Warwick, DIMAP, Coventry, England
[3] East China Normal Univ, Sch Math Sci, Key Lab MEA, Minist Educ, Shanghai, Peoples R China
[4] East China Normal Univ, Shanghai Key Lab PMMP, Shanghai, Peoples R China
基金
中国国家自然科学基金;
关键词
anti-Ramsey problem; expansion of hypergraphs; hypergraph Tur & aacute; n problem; splitting hypergraphs; stability; MATCHINGS; NUMBERS; REGULARITY; LEMMA;
D O I
10.1002/jgt.23204
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The anti-Ramsey number ar ( n , F ) $\text{ar}(n,F)$ of an r $r$ -graph F $F$ is the minimum number of colors needed to color the complete n $n$ -vertex r $r$ -graph to ensure the existence of a rainbow copy of F $F$ . We establish a removal-type result for the anti-Ramsey problem of F $F$ when F $F$ is the expansion of a hypergraph with a smaller uniformity. We present two applications of this result. First, we refine the general bound ar ( n , F ) = ex ( n , F - ) + o ( n r ) $\text{ar}(n,F)=\text{ex}(n,{F}_{-})+o({n}<^>{r})$ proved by Erd & odblac;s-Simonovits-S & oacute;s, where F - ${F}_{-}$ denotes the family of r $r$ -graphs obtained from F $F$ by removing one edge. Second, we determine the exact value of ar ( n , F ) $\text{ar}(n,F)$ for large n $n$ in cases where F $F$ is the expansion of a specific class of graphs. This extends results of Erd & odblac;s-Simonovits-S & oacute;s on complete graphs to the realm of hypergraphs.
引用
收藏
页码:808 / 816
页数:9
相关论文
共 50 条
  • [1] Anti-Ramsey hypergraph numbers
    Budden, Mark
    Stiles, William
    ELECTRONIC JOURNAL OF GRAPH THEORY AND APPLICATIONS, 2021, 9 (02) : 397 - 407
  • [2] Anti-Ramsey number of matchings in a hypergraph
    Jin, Zemin
    DISCRETE MATHEMATICS, 2021, 344 (12)
  • [3] Extremal Graph Theory, Stability, and Anti-Ramsey Theorems
    Simonovits, Miklos
    ALGORITHMS AND DISCRETE APPLIED MATHEMATICS, CALDAM 2018, 2018, 10743 : XV - XIV
  • [4] An anti-Ramsey theorem
    Montellano-Ballesteros, JJ
    Neumann-Lara, V
    COMBINATORICA, 2002, 22 (03) : 445 - 449
  • [6] AN ANTI-RAMSEY THEOREM
    BABAI, L
    GRAPHS AND COMBINATORICS, 1985, 1 (01) : 23 - 28
  • [7] Anti-Ramsey multiplicities
    De Silva, Jessica
    Si, Xiang
    Tait, Michael
    Tuncbilek, Yunus
    Yang, Ruifan
    Young, Michael
    AUSTRALASIAN JOURNAL OF COMBINATORICS, 2019, 73 : 357 - 371
  • [8] An Anti-Ramsey Theorem
    J. J. Montellano-Ballesteros
    V. Neumann-Lara
    Combinatorica, 2002, 22 : 445 - 449
  • [9] An Anti-Ramsey Theorem on Diamonds
    Montellano-Ballesteros, J. J.
    GRAPHS AND COMBINATORICS, 2010, 26 (02) : 283 - 291
  • [10] Anti-Ramsey threshold of cycles?
    Barros, Gabriel Ferreira
    Cavalar, Bruno Pasqualotto
    Mota, Guilherme Oliveira
    Parczyk, Olaf
    DISCRETE APPLIED MATHEMATICS, 2022, 323 : 228 - 235