Amplitude-Preserving 3-D TV Regularization for Seismic Random Noise Attenuation

被引:0
|
作者
Zhang, Peng [1 ]
Hao, Yaju [1 ]
Li, Hongxing [1 ]
Zhang, Hua [1 ]
Yin, Duowen [1 ]
Ai, Hanbing [2 ]
机构
[1] East China Univ Technol, Sch Geophys & Measurement Control Technol, Nanchang 330013, Jiangxi, Peoples R China
[2] China Univ Geosci, Sch Geophys & Geomat, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Three-dimensional displays; TV; Noise; Noise reduction; Linear programming; Noise measurement; Training; Fourier transforms; Convolution; Inverse problems; 3-D seismic random noise attenuation; amplitude preserving; Lagrange interpolation; second-order difference; total variation (TV) regularization;
D O I
10.1109/LGRS.2025.3542040
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Conventional total variation (TV) regularization denoising model is typically constructed by the first-order differences in both lateral and vertical directions. However, first-order differences will result in poor amplitude-preserving outcomes for 3-D seismic random noise attenuation. To address this issue, in this letter, we reform the lateral- and vertical-related constraints in conventional TV regularization function based on high-order differences and Lagrange interpolation to adapt to the lateral and vertical features of seismic data, respectively. Then, we obtain our amplitude-preserving 3-D TV regularization method. In order to optimize the corresponding 3-D denoising objective function, we transform it into frequency-domain and propose a fast optimization method based on the split Bregman algorithm. Both synthetic and field data examples show that our proposed method can yield higher fidelity denoising results compared to the conventional approach.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] Plane-wave orthogonal polynomial transform for amplitude-preserving noise attenuation
    Chen, Yangkang
    Huang, Weilin
    Zhou, Yatong
    Liu, Wei
    Zhang, Dong
    GEOPHYSICAL JOURNAL INTERNATIONAL, 2020, 222 (03) : 1789 - 1804
  • [2] An Efficient Amplitude-Preserving Generalized S Transform and Its Application in Seismic Data Attenuation Compensation
    Wang, Benfeng
    Lu, Wenkai
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (02): : 859 - 866
  • [3] Research on multiple attenuation using 3D high-precision amplitude-preserving Radon transform
    Ma, Jitao
    Liu, Shiyou
    Liao, Zhen
    Shiyou Diqiu Wuli Kantan/Oil Geophysical Prospecting, 2022, 57 (03): : 582 - 592
  • [4] Self-Supervised Multitask 3-D Partial Convolutional Neural Network for Random Noise Attenuation and Reconstruction in 3-D Seismic Data
    Cao, Wei
    Shi, Ying
    Wang, Weihong
    Guo, Xuebao
    Tian, Feng
    Zhao, Yang
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [5] 3-D Bend-ray amplitude-preserving Kirchhoff pre-stack time migration and applications
    Tao Jie
    Chang Xu
    Liu Yi-Ke
    Wang Yi-Bo
    Du Xiang-Dong
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2013, 56 (10): : 3534 - 3541
  • [6] Suppressing seismic random noise based on Seislet-TV dual regularization
    Zhang Peng
    Liu Yang
    Liu XinMing
    Liu Cai
    Zhang Liang
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2020, 63 (05): : 2056 - 2068
  • [7] Structure-Oriented DTGV Regularization for Random Noise Attenuation in Seismic Data
    Wang, Dehua
    Gao, Jinghuai
    Liu, Naihao
    Jiang, Xiudi
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 1757 - 1771
  • [8] Curvelet-TV regularized Bregman iteration for seismic random noise attenuation
    Lari, Hojjat Haghshenas
    Gholami, Ali
    JOURNAL OF APPLIED GEOPHYSICS, 2014, 109 : 233 - 241
  • [9] Seismic random noise attenuation via 3D block matching
    Amani, Sajjad
    Gholami, Ali
    Niestanak, Alireza Javaheri
    JOURNAL OF APPLIED GEOPHYSICS, 2017, 136 : 353 - 363
  • [10] 3-D Random Noise Attenuation Using Stable CUR Matrix Decomposition
    Lin, Peng
    Peng, Suping
    Xiang, Yang
    Cui, Xiaoqin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62