Nonlinear dynamics approach to urban scaling

被引:0
|
作者
Deppman, A. [1 ]
Fagundes, R. L. [2 ]
Megias, E. [3 ,4 ]
Pasechnik, R. [5 ]
Ribeiro, F. L. [2 ]
Tsallis, C. [6 ,7 ,8 ,9 ]
机构
[1] Univ Sao Paulo, Inst Fis, Rua Matao 1371, BR-05508090 Sao Paulo, Brazil
[2] Univ Fed Lavras UFLA, Dept Fis DFI, BR-37200900 Lavras, MG, Brazil
[3] Univ Granada, Dept Fis Atom Mol & Nucl, Ave Fuente Nueva S-N, Granada 18071, Spain
[4] Univ Granada, Inst Carlosde Fis Teor & Computac 1, Ave Fuente Nueva s-n, Granada 18071, Spain
[5] Lund Univ, Dept Phys, Solvegatan 14A, SE-22362 Lund, Sweden
[6] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil
[7] Natl Inst Sci & Technol Complex Syst, Rua Xavier Sigaud 150, BR-22290180 Rio De Janeiro, RJ, Brazil
[8] Santa Fe Inst, 1399 Hyde Pk Rd, Santa Fe, NM 87501 USA
[9] Complex Sci Hub Vienna, Josefstadter Str 39, A-1080 Vienna, Austria
关键词
Allometric scaling; Fractal dimension; Dynamic equation; Nonlinear diffusion; Nonextensive systems; Tsallis Statistics; ANOMALOUS DIFFUSION; EMERGENCE; CALCULUS; CLUSTERS; ENTROPY; GROWTH;
D O I
10.1016/j.chaos.2024.115877
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This study investigates city dynamics employing a nonextensive diffusion equation suited for addressing diffusion within a fractal medium, where the nonadditive parameter, q , plays a relevant role. The findings demonstrate the efficacy of this approach in determining the relation between the fractal dimension of the city, the allometric exponent and q , and elucidating the stationary phase of urban evolution. The dynamic methodology facilitates the correlation of the fractal dimension with both the entropic index and the urban scaling exponent identified in data analyses. The results reveal that the scaling behaviour observed in cities aligns with the fractal dimension measured through independent methods. Moreover, the interpretation of these findings underscores the intimate connection between the fractal dimension and social interactions within the urban context. This research contributes to a deeper comprehension of the intricate interplay between human behaviour, urban dynamics, and the underlying fractal nature of cities.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A Nonlinear dynamics approach for forecasting urban water resources demand
    Zhang, X. H.
    Zhang, H. W.
    Tian, L.
    Zhang, B. A.
    2008 4TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING, VOLS 1-31, 2008, : 11740 - +
  • [2] Transient dynamics and scaling phenomena in urban growth
    Manrubia, SC
    Zanette, DH
    Solé, RV
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 1999, 7 (01) : 1 - 8
  • [3] The spatiotemporal scaling laws of urban population dynamics
    Tan, Xingye
    Huang, Bo
    Batty, Michael
    Li, Weiyu
    Wang, Qi Ryan
    Zhou, Yulun
    Gong, Peng
    NATURE COMMUNICATIONS, 2025, 16 (01)
  • [4] A Nonlinear Programming Approach to Metric Unidimensional Scaling
    Kin-nam Lau
    Pui Lam Leung
    Ka-kit Tse
    Journal of Classification, 1998, 15 : 3 - 14
  • [5] A nonlinear programming approach to metric unidimensional scaling
    Lau, KN
    Leung, PL
    Tse, KK
    JOURNAL OF CLASSIFICATION, 1998, 15 (01) : 3 - 14
  • [6] Temporal evolution of short-term urban traffic flow: A nonlinear dynamics approach
    Vlahogianni, Eleni I.
    Karlaftis, Matthew G.
    Golias, John C.
    COMPUTER-AIDED CIVIL AND INFRASTRUCTURE ENGINEERING, 2008, 23 (07) : 536 - 548
  • [7] Nonlinear analysis of anesthesia dynamics by fractal scaling exponent
    Gifani, P.
    Rabiee, H. R.
    Hashemi, M. R.
    Taslimi, P.
    Ghanbari, M.
    2006 28TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-15, 2006, : 4663 - +
  • [8] AN APPROACH TO URBAN-DYNAMICS
    ORISHIMO, I
    GEOGRAPHICAL ANALYSIS, 1987, 19 (03) : 200 - 210
  • [9] Housing dynamics: An urban approach
    Glaeser, Edward L.
    Gyourko, Joseph
    Morales, Eduardo
    Nathanson, Charles G.
    JOURNAL OF URBAN ECONOMICS, 2014, 81 : 45 - 56
  • [10] Nonlinear approach in nuclear dynamics
    Gridnev, KA
    Kartavenko, VG
    Greiner, W
    EXOTIC CLUSTERING, 2002, 644 : 196 - 205